Find Pythagorean Triples with My Formula

  • Thread starter Thread starter Universe_Man
  • Start date Start date
AI Thread Summary
A new formula for finding Pythagorean triples is presented, using the equation n + ((n-1)/2)^2 = ((n+1)/2)^2, where n is an odd perfect square. The derived triples are (sqrt(n), (n-1)/2, (n+1)/2). While some participants acknowledge the formula's validity, they argue it restates known results related to the difference of squares. Another user proposes a more generalized approach for both odd and even n, suggesting a formula that generates triples for any value of a, contingent on certain conditions. The discussion highlights the novelty of the findings while also addressing their mathematical foundations and implications.
Universe_Man
Messages
61
Reaction score
0
I developed a formula for finding pythagorean triples recently, I thought I'd share it just for general novelty:

n+((n-1)/2)^2=((n+1)/2)^2

Where n= odd perfect square

a^2+b^2=c^2

Pythagorean triple set is (a,b,c)

So pythagorean triple set for my formula is:

(sqrt(n),((n-1)/2),((n+1)/2))

If it's restating something old or obvious, let me know.
 
Mathematics news on Phys.org
Since any polynomial can be written such as p(x) = a_{n}x^{n} + ... + a_{n+1}, and since the equality of polynomials theorem holds true, any result obtained with polynomials is just rewritting very simple identities. If n+((n-1)/2)^2=((n+1)/2)^2 holds true, it's because the left and right side simplify to the exact same expression. Sorry to be the bearer of bad news, but you didn't find anything new.
 
Yes, this is just a trivial consequence of (a+b)(a-b) = a^2 - b^2.

There's a semi-interesting related observation that you can make (at least it was semi-interesting to me when I considered it briefly in my first year of undergrad!): What integers n can be expressed as a difference of squares in a nontrivial way - ie. not just using (n+1)/2 and (n-1)/2?
 
Last edited:
Universe_Man said:
I developed a formula for finding pythagorean triples recently, I thought I'd share it just for general novelty:

n+((n-1)/2)^2=((n+1)/2)^2

Where n= odd perfect square

a^2+b^2=c^2

Pythagorean triple set is (a,b,c)

So pythagorean triple set for my formula is:

(sqrt(n),((n-1)/2),((n+1)/2))

If it's restating something old or obvious, let me know.

did you try it out? like n=9 or n=25 or n=49?

n=9 -> 3, 4, 5 that one i knew of

n=25 -> 5,12,13 that one i knew also

the next one i might not be familiar with:

n=49 -> 7,24,25 i guess that works.

n=81 -> 9,40,41 i guess this works, too.

n=121 -> 11,60,61

you might not be the first to discover it, but i hadn't known this before (and I'm in my 6th decade, but i never took a course in Number Theory, which is where i'll bet this would be). so I'm more favorably impressed than the others.
 
Last edited:
The reason that I say it is trivial is that a = (n+1)/2 and b = (n-1)/2 is precisely the solution to the linear system a-b=1 and a+b=n, for any integer n.

So you're guaranteed to have a^2 - b^2 = (a-b)(a+b) = n. If n is a square that obviously gives you a triple.
 
Last edited:
Similar

Hey, what you found is really similar to what I found.
This is my working:
If n is odd: then n, n^2/2 - 1/2 , n^2/2 + 1/2 is a pythagorean triple.
But if n is even: then n, n^2/4 - 1 , n^2/4 + 1is a pythagorean triple.

So I took it to the next level to be able to say this:
n, n^2/a - a/4 , n^2/a + a/4 is a pythagorean triple for ANY value of a, but not all values of a will give all whole numbers. This only works when 2n > a > 0. I also found that if n is even, than if a is divisible by 4 there is a high chance that it will all be integers. Or if n is odd, then a should be even, but NOT divisible by 4.

What do you think about this?

I went and tested this too. It works for ALL pythagorean triples with the legs smaller than 180000, which kind of gives me a good feeling about it. So I proved it works for a pythagorean triple (it fits into the pythagorean formula), but I want to prove it works for ALL pythagorean triples. Do you have any ideas?

P.S. If this turns out big, I would like to hold rights to it :D
 
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top