Find Ratio ||v||/||u|| for u and v

  • Thread starter Thread starter Whiz
  • Start date Start date
  • Tags Tags
    Ratio
Whiz
Messages
20
Reaction score
0

Homework Statement



For u = (−1, 2, 1) and v = (3, 3, 6) find the ratio ||v|| / ||u||

Homework Equations



|| u || = (u^2 + u2^2 + ...un^2)^.5

The Attempt at a Solution



I found the || u || to be 6^(1/2) and || v || to be 54^(1/2)
Therefore the ratio should be 54^(1/2) divided by 6^(1/2), which calculates to 3. It turns out the answer is incorrect. Can anyone show me where I went wrong?

Thanks.
 
Physics news on Phys.org
Nowhere.
 
I agree. The ratio is 3.

\frac{\sqrt{54}}{\sqrt{6}}~=~\frac{3\sqrt{6}}{\sqrt{6}}=~3
 
Okay thanks. I'll have to tell my instructor about it.
 
Before you do, make sure that the problem you posted here is exactly the same as in your book or wherever this problem came from.
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...
Back
Top