MHB Find the Bearing from A to C & Angle B: Solve Here

AI Thread Summary
To find the distance and bearing from point A to point C, the law of cosines is applied, with the formula AC = √(470² + 250² - 2(470)(250)cos(165). The angle B, which is crucial for this calculation, is derived from the bearings of the two legs of the journey. The first leg from A to B has a bearing of 25 degrees, and the second leg from B to C has a bearing of 40 degrees, leading to an angle BAC of 165 degrees. The discussion emphasizes the need to clarify the calculation of angle ABC and how it relates to the overall geometry of the problem. Understanding these angles is essential for accurately determining the distance and bearing from A to C.
cbarker1
Gold Member
MHB
Messages
345
Reaction score
23
Dear everyone,

An airplane flies 470 miles from point $A$ to point $B$ with a bearing of 25 degrees. It then flies from 250 miles from point $B$ to point $C$ with a bearing of 40 degrees. Find the distance and the bearing from A to point C.
Work

Bearing Problem.png

I understand that I need to use law of cosines for the side $b$ which is opposite of the angle $B$. But I have a hard time with find what is the angle $B$ is. I forgot many things from geometry. How to determine the angle from point $A$ to point $C$?

Thanks
Cbarker1
 
Mathematics news on Phys.org
$AC = \sqrt{470^2+250^2 - 2(470)(250)\cos(165)}$

bearing = $25^\circ + m\angle{BAC}$

$\angle{BAC}$ may be found using either the sine or cosine law
 
How did you determine the angle ABC to be 165?
 
bearings.jpg
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top