Find the coordinates of the point on the ellipsoid where the major axis meet

AI Thread Summary
To find the angle between a point p inside an ellipsoid and its center, the user calculated the coordinates of the intersection of the major axis with the ellipsoid using the unit vector derived from the axis lengths. They derived two sets of coordinates for the intersection point and then applied the distance formula to find the lengths of vectors from the center to the intersection point and from the center to point p. The angle between these vectors was computed using the cosine law, leading to the formula theta = acos{[ax*(xp-xc) + ay*(yp-yc) + az*(zp-zc)]/(a*Lp)}. The discussion clarified that the components of the semi-major axis can be treated as coordinates for this calculation. The approach appears correct for determining the angle in question.
ppmko
Messages
9
Reaction score
0

Homework Statement



I have a point p(xp,yp,zp) inside an ellipsoid and i want to find the angle of that point from the center of the ellipsoid(xc,yc,zc) .

I also have
the major axis length 'a' ,with length ax,ay and az components

I calculated the unit vector of axis a with formula length of axis 'a"/sqrt(ax^2+ay^2+az^2).

Homework Equations


how do i find the angle at which p makes with the center of ellipsoid from the from axis a

The Attempt at a Solution



I calculated the coordinates of the point that intersect the major axis on the ellipsoid using the unit vector by calculating the xcoordinate as ax/sqrt(ax^2+ay^2+az^2) similarly for y and z coordinates
this give me 2 set of coordinates .now i have new coordinates of the point that intersects the major axis on the ellipsoid and the coordinates of p . Now i use distance formula and then use the cosine law for triangles to find the angle betwen the point p and the center of the ellipsoid.pls let me know if this is correct.
 
Physics news on Phys.org
The coordinates of points C, A, and P are (xc,yc,zc), (xa,ya,za), and (xp,yp,zp), respectively. The length of vector CA is La = sqrt[(xa-xc)^2 + (ya-yc)^2 + (za-zc)^2]. The length of vector CP is Lp = sqrt[(xp-xc)^2 + (yp-yc)^2 + (zp-zc)^2]. Therefore, the angle between vectors CA and CP is as follows.

theta = acos{[(xa-xc)(xp-xc) + (ya-yc)(yp-yc) + (za-zc)(zp-zc)]/(La*Lp)}
 
but " a" is not a point. see the coordinates of p and center are given. length of axis and components are given. I am not sure if I can consider components of vector A to be coordinates.Then I can use the cosine formula for the triangle.
 
Good catch. So the coordinates of points C and P are (xc,yc,zc) and (xp,yp,zp). And the components of the length of the ellipsoid semi-major axis are ax, ay, and az. We can call the semi-major axis vector CA. The coordinates of point A are therefore ((xc+ax),(yc+ay),(zc+az)). The length of vector CA is a. The length of vector CP is Lp = sqrt[(xp-xc)^2 + (yp-yc)^2 + (zp-zc)^2]. Therefore, the angle between vectors CA and CP is as follows.

theta = acos{[ax*(xp-xc) + ay*(yp-yc) + az*(zp-zc)]/(a*Lp)}
 
Back
Top