MHB Find the cubic equation that has -1 and 2i as roots

  • Thread starter Thread starter pan90
  • Start date Start date
  • Tags Tags
    Cubic Roots
AI Thread Summary
The cubic equation with roots -1 and 2i must also include the complex conjugate -2i, resulting in the polynomial f(x) = (x + 1)(x - 2i)(x + 2i). This expands to f(x) = (x + 1)(x^2 + 4), leading to the final cubic equation x^3 - x^2 + 4x - 4. The discussion emphasizes the importance of including complex conjugates for polynomials with real coefficients. Substituting the roots into potential equations can help identify the correct polynomial. The method confirms that multiple cubic equations can share the same roots.
pan90
Messages
4
Reaction score
0
Answer is given, but no explanation or logic for it.

View attachment 9220

From HiSet free practice test
 

Attachments

  • cubic equation problem.jpg
    cubic equation problem.jpg
    7.3 KB · Views: 172
Mathematics news on Phys.org
pan90 said:
Answer is given, but no explanation or logic for it.
From HiSet free practice test
You need to show what you have tried, even if it is wrong. That will enable us to help you better.

Note that, for a polynomial with real coefficients, if we have a complex root then we also have the complex conjugate as a root as well. So your cubic polynomial is [math]f(x) = a( x - (-1))(x - (2i))(x - (-2i))[/math].

(The "a" is there because the polynomial will have the same roots no matter what constant is multiplying the whole thing. Your answer key is setting a = 1.)

-Dan

Edit: The method worked to give the right answer, but the signs were wrong. The terms for the given roots are of the form x - r, not x + r as I had originally written.
 
Substitute $x=-1$ and $x=2i$ in each of the given expressions. Do you get $0$? If the same expression gives $0$ for both these two values of $x$, then the equation is the one you’re looking for; otherwise, it isn’t.

Right, let’s do it one at a time. Start with $x=-1$. Substitute this in each of the five expressions A–E. You’ll find that B and D give you $0$ whereas A, C and E don’t. Therefore the correct answer is either B or D (you have eliminated A, C and E).

Now substitute $x=2i$ in B and in D. One will give you $0$ while the other won’t. The one that gives you $0$ is the one you’re looking for.
 
First, there exist an infinite number of different cubic equations that have "-1" and "2i" as roots, Notice that all of the proposed solutions have real coefficients. A polynomial equation with real coefficients but a non-real root must also have the complex conjugate of that non-real root as a root. The complex conjugate of "2i" is "-2i" so the polynomial must be (x+ 1)(x- 2i)(x+ 2i)= (x- 1)(x^2+ 4)= x^3- x^2+ 4x- 4.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top