Find the equation of a tangent line at each given point

isukatphysics69
Messages
453
Reaction score
8

Homework Statement


in title

Homework Equations



x=2cotθ
y=2sin2θ
dy/dx = 2sin3θcosθ
y-y1=m(x-x1)
point = (-2/√3,(3/2)​

The Attempt at a Solution


Have been stuck for hours

I solved for the dy/dx above, now I need to figure out how to get rid of the θ to get my equation in terms of x
so I was thinking sqrt(y/2) = sinθ and (x/2)*sinθ = cosθ

is this a correct approach?
 
Physics news on Phys.org
Apparently ##\theta## is a parameter: ##x=x(\theta), y=y(\theta)##. Is that right? So you can write ##sin(\theta)=f(y), cos(\theta)=g(y)##. Then you eliminate ##\theta## and get ##x=x(y)## and ##\frac{dx}{dy}=h(y)##.
 
  • Like
Likes isukatphysics69
There is no need to get rid of ##\theta## in order to figure out the slope. What you do need to do is to figure out what value of ##\theta## you should be using, i.e., which value of ##\theta## corresponds to the given point.
 
  • Like
Likes isukatphysics69
@Orodruin is right; I don't know what I was thinking of.
 
  • Like
Likes isukatphysics69
How is the point point = (-2/sqrt(3),(3/2) the same as 2pi/3?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top