Find the frictional force acting on a solid cylinder

Click For Summary
The discussion focuses on the frictional forces acting on a solid cylinder in rotational and translational equilibrium. It clarifies that if the force for rotational equilibrium exceeds the limiting static friction, the cylinder will slip, resulting in kinetic friction rather than static friction. The calculations presented indicate a contradiction when attempting to maintain both rotational and translational equilibrium simultaneously, as the forces do not balance correctly. The conversation highlights that at the initial moment, static friction applies, but it quickly transitions to kinetic friction once slipping occurs. The conclusion drawn is that there is no equilibrium when the cylinder begins to slip, leading to the inequality T ≠ f.
Kaushik
Messages
282
Reaction score
17
Homework Statement
A solid cylinder of mass m is wrapped with an inextensible light string and, is placed on a rough inclined plane as shown in the figure below. The frictional force acting between the cylinder and the inclined plane is?
Relevant Equations
$$T + f_{s} = mg*sin(60)$$
$$r \times T = r \times f_{r}$$
1616344627684.png

This was the answer key provided:

1616344658267.png

My questions are the following:
  1. if the force required for rotational equilibrium is more than the limiting static friction, then the body will rotate aka slip over the surface. When it slips, the frictional force will be kinetic and not static, right?
  2. If I use ##f = 0.2mg## (as given in the answer key), then ##T = f = 0.2mg## for rotational equilibrium. But we must also maintain translational equilibrium. But, ##T + f = 0.4mg ≠ mgsin(60)##. Isn't this contradicting?
 
Physics news on Phys.org
  1. I agree. At t=0 you have ##\mu_s mg\cos\theta## but immediately after it is ##\mu_k mg\cos\theta##. I suppose the exercise asks for t = 0
  2. There is no equilibrium, so ##T\ne f##.
 
Beams of electrons and protons move parallel to each other in the same direction. They ______. a. attract each other. b. repel each other. c. neither attract nor repel. d. the force of attraction or repulsion depends upon the speed of the beams. This is a previous-year-question of CBSE Board 2023. The answer key marks (b) as the right option. I want to know why we are ignoring Coulomb's force?