projection
- 48
- 0
Homework Statement
\lim_{x \rightarrow \infty}2x+1-\sqrt{4x^2+5}
The Attempt at a Solution
i am wondering if this method that i used is correct. i get the correct answer but i ahaven't see it in the textbook or on the net. am i doing something that shouldn't be done?
using the limit laws, i take out 1.
\lim_{x \rightarrow \infty} 1 + \lim_{x \rightarrow \infty2x-\sqrt{4x^2+5}
then i rationalize.
.
\lim_{x \rightarrow \infty 1 + \lim_{x \rightarrow \infty} \frac{4x^2-4x^2-5}{2x+\sqrt{4x^2+5}}
1 + \lim_{x \rightarrow \infty}\frac{-5}{2x+x\sqrt{4+\frac{5}{x^2}}}
1 + \lim_{x \rightarrow \infty} \frac{\frac{-5}{x}}{\frac{2x}{x}+\frac{x}{x}\sqrt{4x+\frac{5}{x^2}}}
1 + \frac{0}{4}
1+0=1
i get the right answer when i do it for \lim_{x \rightarrow \infty\sqrt{9x^4-3x^2+1} - 3x^2+5 and these the only two i tried. is this method just lucky for these two or can i keep using it?
also. i seem to be getting the right limit of 1 when x approches postive infinity for \lim_{x \rightarrow \infty\sqrt{9x^2+6x-5} - 3x but i get -1 when approches negative infinity and mathematica keeps telling me its +infinity. can someone do provide me with a soloution?
Last edited: