MHB Find the last digit of a series

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Series
AI Thread Summary
The last digit of the series $1 + 2 + \cdots + n$ can be determined from the condition that the last digit of $1^3 + 2^3 + \cdots + n^3$ is 1. The formulas for the sums are $S_1 = \frac{n(n+1)}{2}$ and $S_3 = \frac{n^2(n+1)^2}{4}$, with the relationship $S_3 = S_1^2$. If $S_3 \equiv 1 \pmod{10}$, then $S_1 \equiv \pm 1 \pmod{10}$. Further analysis shows that $S_1 \equiv 1 \pmod{5}$, leading to the conclusion that $S_1 \equiv 1 \pmod{10}$.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
What is the last digit of $1+2+\cdots+n$ if the last digit of $1^3+2^3+\cdots+n^3$ is 1?
 
Mathematics news on Phys.org
[sp]
We have:
\begin{align*}
S_1 &= 1 + \cdots + n = \dfrac{n(n+1)}{2}\\
S_3 &= 1^3 + \cdots + n^3 = \dfrac{n^2(n+1)^2}{4}
\end{align*}
This shows that $S_3 = S_1^2$. Therefore, if $S_3\equiv1\pmod{10}$, then $S_1\equiv\pm1\pmod{10}$.
It is rather obvious that $S_1\equiv S_3\pmod2$.
We may write $S_1\equiv3n(n+1)\pmod5$, since the multiplicative inverse of $2$ is $3$.
We list the value of $S_1$ for $n\equiv0\dots4\pmod5$:
$$
\begin{array}{c|c|c|c|c|c}
n&0&1&2&3&4\\
\hline
S_1\pmod5&0&1&3&1&0
\end{array}
$$
and we see that we cannot have $S_1\equiv-1\pmod5$; therefore, $S_1\equiv1\pmod{10}$
[/sp]
 
We see that the $1^3+2^3+\cdots+n^3 = (1+2+\cdots+n)^2$

we know that the LHS has last digit 1(given) so $(1+2+\cdots+n)$ has last digit 1 or 9.

$(1+2+\cdots+n) = \frac{n(n+1)}{2} = 10k + m $ say for some k and m

so $n(n+1) = 20 k + 2m$

or $4n(n+1) + 1 = 80k + 8m + 1$
or $(2n+1)^2 = 80k + 8m + 1$

if m =9 then 8m + 1 ends with 3. so the square ends with 3. As no square ends with 3 so m cannot be 9. but 1 is possible

So last digit is 1 that is for n of the form 5k +1
 
Last edited:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
4
Views
1K
Replies
3
Views
1K
Replies
11
Views
2K
Replies
3
Views
2K
Replies
1
Views
1K
Replies
0
Views
964
Back
Top