Calculating the Limit: $\displaystyle \frac{\sqrt{x}}{\sqrt{sinx}}$

  • Thread starter Thread starter whatlifeforme
  • Start date Start date
  • Tags Tags
    Limit
whatlifeforme
Messages
218
Reaction score
0

Homework Statement


Find the limit.

Homework Equations


lim(x->0+) \displaystyle \frac{\sqrt{x}}{\sqrt{sinx}}

The Attempt at a Solution


How should I approach this? I tried taking l'hopitals rule a few times but did not get anywhere.
 
Physics news on Phys.org
Are you familiar with the definition of a continuous function?
 
hi whatlifeforme! :smile:
whatlifeforme said:
I tried taking l'hopitals rule a few times but did not get anywhere.

try squaring it first :wink:
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top