ArcanaNoir
- 778
- 4
Homework Statement
Find the MGF (Moment generating function) of the
a. geometric distribution
b. negative binomial distribution
Homework Equations
geometric distribution: f(x)=p^x(1-p)^{x-1} where x=1,2,3...
negative binomial distribution: f(x)= \frac{(x-1)!}{(x-r)!(r-1)!}p^r(1-p)^{x-r} where x=r, r+1, r+2...
MGF= E(e^{tx})
The Attempt at a Solution
a. \sum_{x=1}^{\infty}e^{tx}p^x(1-p)^{x-1}
let q=1-p
\sum_{x=1}^{\infty}e^{tx}p^xq^{x-1}
\sum_{x=0}^{\infty}(pe^t)q^x
=\frac{pe^t}{1-q}
that's as close as I can get to approximating the solution,
but the book says the answer is \frac{pe^t}{1-qe^t}
b. \sum_{x=r}^{\infty}\frac{(x-1)!}{(x-r)!(r-1)!}e^{tx}p^rq^{x-r} where q=1-p