Find the osculating plane and the curvature

Click For Summary
The discussion focuses on finding the osculating plane and curvature at an arbitrary point on a curve defined by a parametric equation. The osculating plane is determined to be normal to the binormal vector, and the equation for the plane is derived based on the point and the binormal vector. The user encounters difficulties calculating the binormal vector using the cross product of the first and second derivatives of the curve, resulting in complex expressions. Similarly, the curvature calculation using the appropriate formula also proves challenging due to the complexity of the derivatives. The user suggests breaking down the parametric representation of the curve to simplify the differentiation process.
Bptrhp
Messages
8
Reaction score
4
Homework Statement
Find the osculating plane and the curvature of the curve ##r(t)=(a \cos(t)+b \sin(t), a \sin(t)+ b\cos(t), c \sin(2t)),t\in\mathbb{R}##
Relevant Equations
##B(t)=\dfrac{r'(t)\times r''(t)}{||r'(t)\times r''(t)||} ## and ##\kappa=\dfrac{||r'(t)\times r''(t)||}{||r'(t)||^3}.##
I know the osculating plane is normal to the binormal vector ##B(t)=(a,b,c)##. And since the point on which I am supposed to find the osculating plane is not given, I'm trying to find the osculating plane at an arbitrary point ##P(x_0,y_0,z_0)##. So, if ##R(x,y,z)## is a point on the plane, the equation is given by:

##\langle (R-P),B(t)\rangle=0 \, \Rightarrow \,\langle(x-x_0,y-y_0,z-z_0),(a,b,c)\rangle=0\, \Rightarrow \, a(x-x_0)+b(y-y_0)+c(z-z_0)=0.##

The problem is, I tried to compute the binormal vector using the formula
\begin{align*}
B(t)=\dfrac{r'(t)\times r''(t)}{||r'(t)\times r''(t)||}
\end{align*}
but the result of the cross product between ##r'(t)=(-a \sin(t)+b \cos(t),a \cos(t)-b \sin(t), 2c \cos(2t))## and ##r''(t)=(-a \cos(t)-b \sin(t), -a \sin(t)- b\cos(t), -4c \sin(2t))## got very long.

For the curvature, I have a similar problem, since I'm trying to use the formula
\begin{align*}
\kappa=\dfrac{||r'(t)\times r''(t)||}{||r'(t)||^3}.
\end{align*}
I have no idea whether I'm on the right track. I appreciate any help!
 
Physics news on Phys.org
I found it a bit easier breaking up r as ##(a,b,0)\cos(t)+(b,a,0)\sin(t)+(0,0,c)\sin(2t)##, and maintaining that through the differentiations. When it comes to the cross product, some combinations are easily discarded as zero.
Still pretty messy, though.
 
  • Like
Likes Bptrhp and etotheipi
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

Replies
4
Views
2K
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
5K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
6
Views
1K
Replies
1
Views
1K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K