Find the time it takes for bouncing ball to come to rest

AI Thread Summary
The discussion revolves around calculating the total time a bouncing ball takes to come to rest after inelastic collisions with the floor. The time interval between bounces is expressed as tn=(2V/g)*kn/2, where k represents the energy retention factor after each bounce. The user initially struggles with finding the total time T, considering the sum of time intervals and the energy lost per bounce. Eventually, they recognize that the series of time intervals forms a geometric series, leading to the formula T=2V/(g*(1-√k)). The conversation highlights the importance of understanding geometric series in solving the problem effectively.
freutel
Messages
11
Reaction score
0

Homework Statement


A ball, which is launched in the air with velocity V, has inelastic collisions with the floor: the kinetic energy after each collision is k times the kinetic energy before the collision, where k<1. Assume that the gravitational acceleration is constant: g [m/s^2]. I was asked to show that the time interval between the nth and the (n+1)th bounce is tn=(2V/g)*kn/2. This was pretty simple using conservation of energy and motion along straight-line equations. The second question asks me to find the total time T the bouncing ball takes to come to rest. This is where I am stuck.

Homework Equations


  • Conservation of energy -> mgh=½mV2
  • after the nth bounce Kinetic Energyn = kn(½mV2) which is equal to ½m(vn)2.
  • height the ball reaches after the nth bounce -> hn=knV2/(2g)
  • Motion along straight-line equations -> v=at, x=x0+v0t+½at2
  • Time interval between the nth and the (nth+1)th bounce -> tn=(2V/g)*kn/2

The Attempt at a Solution



I honestly did not know where to start but I started with the thought that if the ball stops bouncing it means that hn would be zero. I splitted the time interval equation in (V/g)*kn/2 + (V/g)*kn/2) = tn. With the height of the ball equation i subbed one part of the time interval equation which results in tn=(V/g)*kn/2 + √(2hn/g). I moved everything except the height part to the left and when removing the square root I got (tn)2 - (V2/g2)*kn = 2hn/g. It is clear that for hn to be zero then (tn)2 has to be equal to (V2/g2)*kn. I have a feeling I'm drifting towards a wrong answer with this because I really do not know what to do now. Did I approach this problem correctly? If so, what do I have to do to finalize it and if not, I would really appreciate some help to push me in the right direction!
 
Physics news on Phys.org
Can you think of something from your maths classes that might help to find the total time?
 
Now i came up with that the total time it will take is T=t0 + Σtn with n=1, 2, 3,...,. The energy that is lost after every bounce is also ½mv2(1-kn). The number of bounces needed is when kn approaches zero. That's all I know.
Now that I think of it, it may be impossible to know what n is with the data given. So maybe the proper answer is T=t0 + Σ(2V0/g)*kn/2 with n starting from 1 till the value of n when kn is close to zero so I guess till the value of n when n=klog(0,0001)
 
freutel said:
Now i came up with that the total time it will take is T=t0 + Σtn with n=1, 2, 3,...,. The energy that is lost after every bounce is also ½mv2(1-kn). The number of bounces needed is when kn approaches zero. That's all I know.
Now that I think of it, it may be impossible to know what n is with the data given. So maybe the proper answer is T=t0 + Σ(2V0/g)*kn/2 with n starting from 1 till the value of n when kn is close to zero so I guess till the value of n when n=klog(0,0001)

Yes, but think mathematically rather than physically. What kind of sum might you be dealing with?
 
It's power series right? With the power of k constantly increasing. I honestly do not know and I'm just saying stuff.
 
freutel said:
It's power series right? With the power of k constantly increasing. I honestly do not know and I'm just saying stuff.

It's a "geometric" series. Remember them?
 
Wow, I would seriously have never come up with that. Should have paid more attention in class. So I looked it up how to solve a geometric series (because I never quite learned how to do it in school) so i came up with this

T=t0 + t1 + t2 + t3 +... + tn.

T=(2V/g) + (2V/g)*√k + (2V/g)*√k2 + (2V/g)*√k3 + ... + (2V/g)*√kn

So the common ratio is √k

T - (√k)T=2V/g

T=2V/(g*(1-√k))

Thanks a lot PeroK!
 
Back
Top