Find the type of equilibrium at (0,0) for x'=x, y'=y

  • Thread starter Thread starter anicic
  • Start date Start date
  • Tags Tags
    Equilibrium Type
anicic
Messages
1
Reaction score
0

Homework Statement



I need to solve the differential equations given, find the type and stability of the equilibrium at (0,0), without matricies.

Homework Equations



none

The Attempt at a Solution



starting:

x' = x
y' = y

dy/dx = y'/x' = y/x

=> dy/y = dx/x

integrating gives

ln y + c1 = lnx + c2

rearrange and get

ln(y/x) = c


have i done it right so far?
i get stuck at this point
 
Physics news on Phys.org
I'm only wondering why you are solving for y as a function of x at all.

dx/dt= x, dy/dt= y. What is true about the derivatives if x and y both close to 0 but positive?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top