MHB Finding a^-3 + b^-3; Can someone check if what I did is right?

  • Thread starter Thread starter IHateFactorial
  • Start date Start date
IHateFactorial
Messages
15
Reaction score
0
Can someone check if this is right?

So, having two numbers, a and b, we can say that their product is 1, and the sum of their squares is 4, find the sum of:

$$a^{-3} + b^{-3}$$

Well, we have:
$$ab = 1$$

$$a^2 + b^2 = 4$$

This means that a and b are reciprocals... Thus:

$$a^{-3} + b^{-3} = a^3 + b^3$$

$$a^3 + b^3 = (a+b) (a^2 - ab + b^2)$$

We know that a^2 +b^2 = 4 and that ab = 1, so we put those in, respectively.

$$a^3 + b^3 = (a+b) (4 - 1)$$

$$a^3 + b^3 = (a+b) (3)$$

And now the problem is finding a + b, which isn't that hard either.

We can take ab = 1 and multiply it by two and add a^2 + b^2 to both sides, which is 4.

$$a^2 + 2ab + b^2= 2 + 4 = 6$$

We factorize, then square root it.

$$\sqrt{(a+b)^2} = \sqrt{6} ; a+b = \sqrt{6}$$

Then, we just insert that into what we previously had:

$$a^3 + b^3 = \sqrt{6} (3)$$

Is that right?
 
Mathematics news on Phys.org
I agree.
 
What if $a,b < 0$?
 
Deveno said:
What if $a,b < 0$?

My bad, I didn't include that: The COMPLETE instructions are:

Let a and b be real, positive numbers such that their product is one and the sum of their squares is 4. Find the exact value of the expression:

$$a^{-3} + b^{-3}$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top