MHB Finding a^-3 + b^-3; Can someone check if what I did is right?

  • Thread starter Thread starter IHateFactorial
  • Start date Start date
AI Thread Summary
To find the value of a^-3 + b^-3 given that ab = 1 and a^2 + b^2 = 4, it is established that a and b are reciprocals. The expression a^-3 + b^-3 can be rewritten as a^3 + b^3, which is calculated using the formula (a+b)(a^2 - ab + b^2). Substituting the known values, a^3 + b^3 simplifies to (a+b)(3). To find a + b, the equation a^2 + 2ab + b^2 = 6 leads to a + b = √6. The final result for a^-3 + b^-3 is then √6 multiplied by 3.
IHateFactorial
Messages
15
Reaction score
0
Can someone check if this is right?

So, having two numbers, a and b, we can say that their product is 1, and the sum of their squares is 4, find the sum of:

$$a^{-3} + b^{-3}$$

Well, we have:
$$ab = 1$$

$$a^2 + b^2 = 4$$

This means that a and b are reciprocals... Thus:

$$a^{-3} + b^{-3} = a^3 + b^3$$

$$a^3 + b^3 = (a+b) (a^2 - ab + b^2)$$

We know that a^2 +b^2 = 4 and that ab = 1, so we put those in, respectively.

$$a^3 + b^3 = (a+b) (4 - 1)$$

$$a^3 + b^3 = (a+b) (3)$$

And now the problem is finding a + b, which isn't that hard either.

We can take ab = 1 and multiply it by two and add a^2 + b^2 to both sides, which is 4.

$$a^2 + 2ab + b^2= 2 + 4 = 6$$

We factorize, then square root it.

$$\sqrt{(a+b)^2} = \sqrt{6} ; a+b = \sqrt{6}$$

Then, we just insert that into what we previously had:

$$a^3 + b^3 = \sqrt{6} (3)$$

Is that right?
 
Mathematics news on Phys.org
I agree.
 
What if $a,b < 0$?
 
Deveno said:
What if $a,b < 0$?

My bad, I didn't include that: The COMPLETE instructions are:

Let a and b be real, positive numbers such that their product is one and the sum of their squares is 4. Find the exact value of the expression:

$$a^{-3} + b^{-3}$$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top