MHB Finding a^-3 + b^-3; Can someone check if what I did is right?

  • Thread starter Thread starter IHateFactorial
  • Start date Start date
AI Thread Summary
To find the value of a^-3 + b^-3 given that ab = 1 and a^2 + b^2 = 4, it is established that a and b are reciprocals. The expression a^-3 + b^-3 can be rewritten as a^3 + b^3, which is calculated using the formula (a+b)(a^2 - ab + b^2). Substituting the known values, a^3 + b^3 simplifies to (a+b)(3). To find a + b, the equation a^2 + 2ab + b^2 = 6 leads to a + b = √6. The final result for a^-3 + b^-3 is then √6 multiplied by 3.
IHateFactorial
Messages
15
Reaction score
0
Can someone check if this is right?

So, having two numbers, a and b, we can say that their product is 1, and the sum of their squares is 4, find the sum of:

$$a^{-3} + b^{-3}$$

Well, we have:
$$ab = 1$$

$$a^2 + b^2 = 4$$

This means that a and b are reciprocals... Thus:

$$a^{-3} + b^{-3} = a^3 + b^3$$

$$a^3 + b^3 = (a+b) (a^2 - ab + b^2)$$

We know that a^2 +b^2 = 4 and that ab = 1, so we put those in, respectively.

$$a^3 + b^3 = (a+b) (4 - 1)$$

$$a^3 + b^3 = (a+b) (3)$$

And now the problem is finding a + b, which isn't that hard either.

We can take ab = 1 and multiply it by two and add a^2 + b^2 to both sides, which is 4.

$$a^2 + 2ab + b^2= 2 + 4 = 6$$

We factorize, then square root it.

$$\sqrt{(a+b)^2} = \sqrt{6} ; a+b = \sqrt{6}$$

Then, we just insert that into what we previously had:

$$a^3 + b^3 = \sqrt{6} (3)$$

Is that right?
 
Mathematics news on Phys.org
I agree.
 
What if $a,b < 0$?
 
Deveno said:
What if $a,b < 0$?

My bad, I didn't include that: The COMPLETE instructions are:

Let a and b be real, positive numbers such that their product is one and the sum of their squares is 4. Find the exact value of the expression:

$$a^{-3} + b^{-3}$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top