Yann
- 48
- 0
Sorry to ask yet another question, but it's very hard to contact my teacher.
f(x,y,z) = x^2-yz+z^2
a = (0,1,1), b = (1,3,2). Find a point c on the line joining a and b such that;
f(b)-f(a)=\nabla f(c)\bullet(b-a)
2. The attempt at a solution
f(b) = 1-3*2+2^2=-1
f(a) = 0-1*1+1 = 0
\nabla f(c) = (2x)i - (z)j + (2z-y)k
(b - a) = i + 2j + k
-1 = [(2x)i - (z)j + (2z-y)k]\bullet[i + 2j + k]
-1 = 2x -2z + 2z-y
0 = 2x -y +1
Let L be the line between a and b
L = ti+(1+2t)+(1+t)k
By substitution to find the point on the line that is also on the plane;
0 = 2t -1-2t +1
0 =
So, it seems to be impossible
Homework Statement
f(x,y,z) = x^2-yz+z^2
a = (0,1,1), b = (1,3,2). Find a point c on the line joining a and b such that;
f(b)-f(a)=\nabla f(c)\bullet(b-a)
2. The attempt at a solution
f(b) = 1-3*2+2^2=-1
f(a) = 0-1*1+1 = 0
\nabla f(c) = (2x)i - (z)j + (2z-y)k
(b - a) = i + 2j + k
-1 = [(2x)i - (z)j + (2z-y)k]\bullet[i + 2j + k]
-1 = 2x -2z + 2z-y
0 = 2x -y +1
Let L be the line between a and b
L = ti+(1+2t)+(1+t)k
By substitution to find the point on the line that is also on the plane;
0 = 2t -1-2t +1
0 =
So, it seems to be impossible