MHB Finding a radius when an angular speed in RPM is given

bsmithysmith
Messages
23
Reaction score
0
When being burned in a writable CD-R Drive, the angular speed is often faster when playing audio... When writing along the outer edge, the angular speed of one drive is about 4800 RPM (Revolutions per minute). Find the linear speed.

The question above it, or before this one was with CD's radius is 60mm and the RPM is 200 but this time I'm not given the Radius. On that previous problem, it took me awhile to figure out after seeing the answer at the back of the book that the linear speed is approximated to 75,000.000 mm/min. (just giving part of the final answer). What I did to get that answer was multiply $$2pi$$ by the RPM, 200, because an entire revolution IS 2pi. Then I multiplied the answer by the radius. All in all it was pretty much:

$$Velocity = RPM(2pi)(Radius)$$

I still don't understand how that equation links to the answer; it's not clicking in my head why and how velocity is linked to circumference multiplied by the RPM.

Back to the main question, how do I find the linear speed when I have not been given the radius?

$$Velocity = 9600pi(radius)$$
 
Mathematics news on Phys.org
bsmithysmith said:
When being burned in a writable CD-R Drive, the angular speed is often faster when playing audio... When writing along the outer edge, the angular speed of one drive is about 4800 RPM (Revolutions per minute). Find the linear speed.

The question above it, or before this one was with CD's radius is 60mm and the RPM is 200 but this time I'm not given the Radius. On that previous problem, it took me awhile to figure out after seeing the answer at the back of the book that the linear speed is approximated to 75,000.000 mm/min. (just giving part of the final answer). What I did to get that answer was multiply $$2pi$$ by the RPM, 200, because an entire revolution IS 2pi. Then I multiplied the answer by the radius. All in all it was pretty much:

$$Velocity = RPM(2pi)(Radius)$$

I still don't understand how that equation links to the answer; it's not clicking in my head why and how velocity is linked to circumference multiplied by the RPM.

Back to the main question, how do I find the linear speed when I have not been given the radius?

$$Velocity = 9600pi(radius)$$
Are the two problems linked? As you say, this cannot be done without the radius.

-Dan

PS Velocity has an associated direction. Speed does not. You are looking for the speed, not velocity.
 
topsquark said:
Are the two problems linked? As you say, this cannot be done without the radius.

-Dan

PS Velocity has an associated direction. Speed does not. You are looking for the speed, not velocity.

My mistake, linear speed is not velocity since its distance/time whereas the one in my book is arclength/time.

The two problems are not linked despite the one I'm asking does not have a radius given. I'll ask my teacher tomorrow about it.

On the other hand, I'm still curious about how [MATH/]2pi(r)(rpm)$$ turns angular speed to linear speed.
 
bsmithysmith said:
how do I find the linear speed when I have not been given the radius?
If the disk radius has not change between CDs, DVDs and Blu-ray disks, we can assume that it has not changed from one problem to the next. :)

bsmithysmith said:
I still don't understand how that equation links to the answer; it's not clicking in my head why and how velocity is linked to circumference multiplied by the RPM.
Let $\nu$ be the frequency measured in RPM and $r$ be the radius. Fix some time interval $t$ measured in minutes. During this time, the disk has made $\nu t$ revolutions. The point has traveled distance $d=2\pi r\cdot\nu t$. Therefore, the point's speed is $d/t=2\pi r\nu$.
 
Well as you pointed out, there is pretty much no way to finish it without a radius, so I just used the radius of the CD above (60mm) and I'm satisfied!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
2
Views
3K
Replies
4
Views
2K
Replies
6
Views
4K
Replies
3
Views
7K
Replies
7
Views
2K
Back
Top