Finding a Subspace W of R^4 for Direct Sum V(+)W

student82
Messages
4
Reaction score
0
V is a subspace of R^4
V={(x, -y, 2x+y, x-2y): x,y E R}

1) extend {(2,-1,5,0)} to a basis of V.

2) find subspace W of R^4 for which R^4= direct sum V(+)W.


solution:

1)the dimension of V is 2.therefore i need to add one more vector to (2,-1,5,0).
the 2nd vector is (1,0,2,1).
therefore the basis is {(2,-1,5,0),(1,0,2,1)}.

i want to know whether my answer is correct.


2)dim of W is 2.
so I've to extend the basis for V by just adding any two vectors in R4, making sure that they don't become linearly dependent.

in this case I'm not able to find the basis.should i take the standard basis i.e. (1,0,0,0) or (0,1,0,0) or(0,0,1,0) as the first vector.
 
Physics news on Phys.org
I believe your answer to 1) is correct. The resulting basis appears to span V.

I'm not entirely certain what you mean for 2), but I interpret the question to mean: "Extend the basis found in part 1) to span R^4". I hope I got it correct.

For 2), the strategy you should follow is: Create a 2x4 matrix A with the 2 vectors from 1) as row vectors. Reduce the matrix to reduced row echelon form by Gauss-Jordan elimination. Once you get to this stage, consider the 4 standard bases (1,0,0,0), (0,1,0,0) (0,0,1,0) and (0,0,0,1). To span R^4, you need to add 2 of these vectors to your reduced-row echelon form of A, so that you may reduce A to the identity matrix. Once you write it all out, it shouldn't too difficult to see which of the standard basis vectors you need to add as row vectors to A in order to be able to reduce to I.
 
Last edited:
is (0,1,0,0) the correct answer?
 
sorry
is {(0,0,1,0),(0,1,0,0)} the correct answer.
 
Yeah I think your answer works. By the way, I realized my "hint" earlier was wrong, apparently (1,0,0,0) and (0,0,1,0) works as well. There should be more than one correct answer here.
 
thanks
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...
Back
Top