- 98

- 0

**1. The problem statement, all variables and given/known data**

The base of a solid is a circle of radius 3. Find the volume of the solid if

parallel cross-sections perpendicular to the base are isosceles right triangles with

hypotenuse lying along the base.

**2. Relevant equations**

pi * Integral Rout^2- Rin^2

**3. The attempt at a solution**

I've tried to do the equation above but i believe I'm just having a problem visualizing this problem. Can someone run a step by step process in solving this equation.

I already know the answer is 36

My guess is like I find the area of triange and since the radius is 3 then that should be the hypotenuse...which then means the sides are 3/sqrt(2) the area becomes 3...and then the volume would be 2 integral of 3 from 0-6 which becomes 36

Last edited: