Finding Acceleration of Gravity of Fictional Planet

AI Thread Summary
The discussion centers on calculating the acceleration of gravity on the fictional planet Zircon based on a problem involving an astronaut tossing a rock. The astronaut throws the rock horizontally at 6.95 m/s, which falls 1.4 m and lands 8.75 m away. Initial calculations suggest a speed of 1.11 m/s for the rock's vertical fall, but the book states the correct acceleration is 1.77 m/s. The confusion arises from not applying the correct equations for projectile motion, which involve time, distance, and acceleration rather than constant speed. Understanding the principles of projectile motion is crucial for solving this problem accurately.
to819
Messages
8
Reaction score
0
In preparation for my upcoming first exam I was doing all of the suggested problems throughout the chapters. Everything was fine until this problem:

Homework Statement


An astronaut on the planet Zircon tosses a rock horizontally with a speed of 6.95m/s. The rock falls through a vertical distance of 1.4m and lands a horizontal distance of 8.75m from the astronaut. What is the acceleration of gravity on Zircon?


Homework Equations


Distance=speed x time
Speed=distance/time


The Attempt at a Solution



8.75m/6.95m/s=1.26s

1.4m/1.26s=1.11m/s

Now, I thought this was correct but according to the back of the book the answer is 1.77m/s which would be 1.4*1.26. Am I misunderstanding something?
 
Physics news on Phys.org
You found the speed of the rock if it fell at a constant speed. You are meant to find the acceleration of the rock. You need to use an equation that relates time, distance and acceleration.
 
Are you doing projectile motion?
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...

Similar threads

Back
Top