Finding $\angle ACB$ in $\triangle ABC$

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
Click For Summary

Discussion Overview

The discussion revolves around finding the angle $\angle ACB$ in triangle $\triangle ABC$, given specific angle measures and a point D on side BC. The context includes geometric reasoning and problem-solving approaches.

Discussion Character

  • Homework-related, Mathematical reasoning, Exploratory

Main Points Raised

  • Post 1 presents the problem setup with given angles and relationships between segments.
  • Post 2 and Post 3 indicate attempts at solutions, though the content of their solutions is not detailed.
  • Post 4 suggests that geometry should be employed in the solution, but the participant expresses frustration with their geometric attempts.
  • Post 5 reiterates the problem setup, indicating a continued exploration of the solution.

Areas of Agreement / Disagreement

There is no clear consensus on the solution or approach, as multiple participants are attempting to solve the problem with varying methods, and some express difficulty in finding a geometric solution.

Contextual Notes

The discussion lacks detailed mathematical steps or assumptions that may be necessary for a complete solution. The reliance on geometric reasoning is noted but not elaborated upon.

Albert1
Messages
1,221
Reaction score
0
$\triangle ABC ,\angle ABC =45^o,\,\,point \,\, D \,\, on \,\, \overline{BC}, \,\,and :$
$2\overline {BD}=\overline {CD},\,\,\angle DAB=15^o$
please find :$\angle ACB=?$
 
Mathematics news on Phys.org
My solution:

This is most likely not what you're looking for but I couldn't resist to solve any given geometry problem with the help of my close friend, aka trigonometry, hehehe...:p:o

View attachment 3568

First let $BD=DE=EC=k$ and join DG and GF such that $\angle ABC=45^{\circ}=\angle DGB$, $\angle GDF=30^{\circ}=\angle DFG$ and $\angle DAB=15^{\circ}=\angle AGF$ so triangles $DBG$, $DGF$ and $AGF$ are isosceles with the congruent sides labeled as $k$.

Applying the Sine Rule to the triangle $DFG$ we have

$\dfrac{DF}{\sin 120^{\circ}}=\dfrac{k}{\sin 30^{\circ}}\,\,\,\implies DF=\sqrt{3}k$

Applying the Cosine Rule to the triangle $ACD$ we get

$AC^2=(2k)^2+((1+\sqrt{3})k)^2-2(2k)(1+\sqrt{3})k)\cos 60^{\circ}\,\,\,\implies AC=\sqrt{6}k$

Applying the Sine Rule again to the triangle $ACD$ we see that

$\dfrac{AC}{\sin 60^{\circ}}=\dfrac{AD}{\sin ACB}$

$\sin ACB=\dfrac{1+\sqrt{3}}{2\sqrt{2}}=\dfrac{1}{2}\cdot\dfrac{1}{\sqrt{2}}+\dfrac{\sqrt{3}}{2}\cdot\dfrac{1}{\sqrt{2}}=\sin 30^{\circ}\cos 45^{\circ}+\cos 30^{\circ}\sin 45^{\circ}=\sin(30^{\circ}+45^{\circ})=\sin 75^{\circ}$

$\therefore \angle ACB=75^{\circ}$.
 

Attachments

  • Fing angle ACB.JPG
    Fing angle ACB.JPG
    11.8 KB · Views: 130
anemone said:
My solution:

This is most likely not what you're looking for but I couldn't resist to solve any given geometry problem with the help of my close friend, aka trigonometry, hehehe...:p:o

View attachment 3568

First let $BD=DE=EC=k$ and join DG and GF such that $\angle ABC=45^{\circ}=\angle DGB$, $\angle GDF=30^{\circ}=\angle DFG$ and $\angle DAB=15^{\circ}=\angle AGF$ so triangles $DBG$, $DGF$ and $AGF$ are isosceles with the congruent sides labeled as $k$.

Applying the Sine Rule to the triangle $DFG$ we have

$\dfrac{DF}{\sin 120^{\circ}}=\dfrac{k}{\sin 30^{\circ}}\,\,\,\implies DF=\sqrt{3}k$

Applying the Cosine Rule to the triangle $ACD$ we get

$AC^2=(2k)^2+((1+\sqrt{3})k)^2-2(2k)(1+\sqrt{3})k)\cos 60^{\circ}\,\,\,\implies AC=\sqrt{6}k$

Applying the Sine Rule again to the triangle $ACD$ we see that

$\dfrac{AC}{\sin 60^{\circ}}=\dfrac{AD}{\sin ACB}$

$\sin ACB=\dfrac{1+\sqrt{3}}{2\sqrt{2}}=\dfrac{1}{2}\cdot\dfrac{1}{\sqrt{2}}+\dfrac{\sqrt{3}}{2}\cdot\dfrac{1}{\sqrt{2}}=\sin 30^{\circ}\cos 45^{\circ}+\cos 30^{\circ}\sin 45^{\circ}=\sin(30^{\circ}+45^{\circ})=\sin 75^{\circ}$

$\therefore \angle ACB=75^{\circ}$.
your answer is correct !,will you try to use geometry ?
(let geometry also be your close friend)
 
Albert said:
your answer is correct !,will you try to use geometry ?
(let geometry also be your close friend)

I in fact tried to tackle it geometrically and I thought it must have everything to do to prove that

the quadrilateral $AGDC$ is cyclic

but all of my attempts had been proven to be exercises in futility.(Doh)
 
Albert said:
$\triangle ABC ,\angle ABC =45^o,\,\,point \,\, D \,\, on \,\, \overline{BC}, \,\,and :$
$2\overline {BD}=\overline {CD},\,\,\angle DAB=15^o$
please find :$\angle ACB=?$

My solution:
 

Attachments

  • Angle ACB.jpg
    Angle ACB.jpg
    12.6 KB · Views: 120
Last edited by a moderator:

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
2
Views
2K