MHB Finding $\angle ACB$ in $\triangle ABC$

  • Thread starter Thread starter Albert1
  • Start date Start date
Click For Summary
In triangle ABC, with angle ABC measuring 45 degrees, point D lies on line segment BC such that 2BD equals CD, and angle DAB is 15 degrees. Participants discuss various approaches to find angle ACB, emphasizing the importance of geometric methods. Despite attempts to solve the problem geometrically, some contributors express frustration at their lack of success. The conversation highlights the challenge of applying geometric principles effectively in this context. Ultimately, the goal remains to determine the measure of angle ACB.
Albert1
Messages
1,221
Reaction score
0
$\triangle ABC ,\angle ABC =45^o,\,\,point \,\, D \,\, on \,\, \overline{BC}, \,\,and :$
$2\overline {BD}=\overline {CD},\,\,\angle DAB=15^o$
please find :$\angle ACB=?$
 
Mathematics news on Phys.org
My solution:

This is most likely not what you're looking for but I couldn't resist to solve any given geometry problem with the help of my close friend, aka trigonometry, hehehe...:p:o

View attachment 3568

First let $BD=DE=EC=k$ and join DG and GF such that $\angle ABC=45^{\circ}=\angle DGB$, $\angle GDF=30^{\circ}=\angle DFG$ and $\angle DAB=15^{\circ}=\angle AGF$ so triangles $DBG$, $DGF$ and $AGF$ are isosceles with the congruent sides labeled as $k$.

Applying the Sine Rule to the triangle $DFG$ we have

$\dfrac{DF}{\sin 120^{\circ}}=\dfrac{k}{\sin 30^{\circ}}\,\,\,\implies DF=\sqrt{3}k$

Applying the Cosine Rule to the triangle $ACD$ we get

$AC^2=(2k)^2+((1+\sqrt{3})k)^2-2(2k)(1+\sqrt{3})k)\cos 60^{\circ}\,\,\,\implies AC=\sqrt{6}k$

Applying the Sine Rule again to the triangle $ACD$ we see that

$\dfrac{AC}{\sin 60^{\circ}}=\dfrac{AD}{\sin ACB}$

$\sin ACB=\dfrac{1+\sqrt{3}}{2\sqrt{2}}=\dfrac{1}{2}\cdot\dfrac{1}{\sqrt{2}}+\dfrac{\sqrt{3}}{2}\cdot\dfrac{1}{\sqrt{2}}=\sin 30^{\circ}\cos 45^{\circ}+\cos 30^{\circ}\sin 45^{\circ}=\sin(30^{\circ}+45^{\circ})=\sin 75^{\circ}$

$\therefore \angle ACB=75^{\circ}$.
 

Attachments

  • Fing angle ACB.JPG
    Fing angle ACB.JPG
    11.8 KB · Views: 121
anemone said:
My solution:

This is most likely not what you're looking for but I couldn't resist to solve any given geometry problem with the help of my close friend, aka trigonometry, hehehe...:p:o

View attachment 3568

First let $BD=DE=EC=k$ and join DG and GF such that $\angle ABC=45^{\circ}=\angle DGB$, $\angle GDF=30^{\circ}=\angle DFG$ and $\angle DAB=15^{\circ}=\angle AGF$ so triangles $DBG$, $DGF$ and $AGF$ are isosceles with the congruent sides labeled as $k$.

Applying the Sine Rule to the triangle $DFG$ we have

$\dfrac{DF}{\sin 120^{\circ}}=\dfrac{k}{\sin 30^{\circ}}\,\,\,\implies DF=\sqrt{3}k$

Applying the Cosine Rule to the triangle $ACD$ we get

$AC^2=(2k)^2+((1+\sqrt{3})k)^2-2(2k)(1+\sqrt{3})k)\cos 60^{\circ}\,\,\,\implies AC=\sqrt{6}k$

Applying the Sine Rule again to the triangle $ACD$ we see that

$\dfrac{AC}{\sin 60^{\circ}}=\dfrac{AD}{\sin ACB}$

$\sin ACB=\dfrac{1+\sqrt{3}}{2\sqrt{2}}=\dfrac{1}{2}\cdot\dfrac{1}{\sqrt{2}}+\dfrac{\sqrt{3}}{2}\cdot\dfrac{1}{\sqrt{2}}=\sin 30^{\circ}\cos 45^{\circ}+\cos 30^{\circ}\sin 45^{\circ}=\sin(30^{\circ}+45^{\circ})=\sin 75^{\circ}$

$\therefore \angle ACB=75^{\circ}$.
your answer is correct !,will you try to use geometry ?
(let geometry also be your close friend)
 
Albert said:
your answer is correct !,will you try to use geometry ?
(let geometry also be your close friend)

I in fact tried to tackle it geometrically and I thought it must have everything to do to prove that

the quadrilateral $AGDC$ is cyclic

but all of my attempts had been proven to be exercises in futility.(Doh)
 
Albert said:
$\triangle ABC ,\angle ABC =45^o,\,\,point \,\, D \,\, on \,\, \overline{BC}, \,\,and :$
$2\overline {BD}=\overline {CD},\,\,\angle DAB=15^o$
please find :$\angle ACB=?$

My solution:
 

Attachments

  • Angle ACB.jpg
    Angle ACB.jpg
    12.6 KB · Views: 116
Last edited by a moderator:
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
2
Views
2K