MHB Finding $\angle QCA$ from Altitude $AM$ of Triangle $ABC$

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Altitude Triangle
AI Thread Summary
To find angle QCA in triangle ABC with point Q on altitude AM, given angles QBA at 20 degrees, QBC at 40 degrees, and QCB at 30 degrees, the problem requires applying triangle angle properties. The sum of angles in triangle QBC can be used to determine angle QCA. By calculating the remaining angles, angle QCA is found to be 90 degrees minus the sum of angles QBA and QBC. The solution confirms the relationships between the angles and the properties of the triangle. The discussion emphasizes the importance of understanding triangle geometry to solve for unknown angles.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
If $Q$ is a point on the altitude $AM$ of triangle $ABC$, and that $\angle QBA=20^{\circ}$, $\angle QBC=40^{\circ}$ and $\angle QCB=30^{\circ}$, find $\angle QCA$.
 
Mathematics news on Phys.org
anemone said:
If $Q$ is a point on the altitude $AM$ of triangle $ABC$, and that $\angle QBA=20^{\circ}$, $\angle QBC=40^{\circ}$ and $\angle QCB=30^{\circ}$, find $\angle QCA$.
Point Q must be the orthocenter of
$\triangle ABC $
we have :$\angle QCA+30+40=90$
$\therefore \angle QCA=20^o$
 
Albert said:
Point Q must be the orthocenter of
$\triangle ABC $
we have :$\angle QCA+30+40=90$
$\therefore \angle QCA=20^o$

Well done, Albert! Well done!(Yes) And thanks for participating!
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top