- 6,221
- 31
1.Homework Statement
y=x^{\frac}{1}{2}}- \frac{1}{3}x^{\frac{3}{2}}+\lambda
For 0 \leq x \leq 3
Show that the arc length,s=2\sqrt{3}
s=\int_{x_1} ^{x_2} \sqrt{1+ (\frac{dy}{dx})^2} dx
\frac{dy}{dx}=\frac{1}{2\sqrt{x}} - \frac{1}{2}x^{\frac{1}{2}}
(\frac{dy}{dx})^2=\frac{1}{4x}-\frac{1}{2}+\frac{x}{2}
s=\int_{0} ^{3} \sqrt{\frac{1}{4x}+\frac{x}{2}+\frac{1}{2}} dx
and now that integral seems a bit too odd to get the answer 2\sqrt{3}
y=x^{\frac}{1}{2}}- \frac{1}{3}x^{\frac{3}{2}}+\lambda
For 0 \leq x \leq 3
Show that the arc length,s=2\sqrt{3}
Homework Equations
s=\int_{x_1} ^{x_2} \sqrt{1+ (\frac{dy}{dx})^2} dx
The Attempt at a Solution
\frac{dy}{dx}=\frac{1}{2\sqrt{x}} - \frac{1}{2}x^{\frac{1}{2}}
(\frac{dy}{dx})^2=\frac{1}{4x}-\frac{1}{2}+\frac{x}{2}
s=\int_{0} ^{3} \sqrt{\frac{1}{4x}+\frac{x}{2}+\frac{1}{2}} dx
and now that integral seems a bit too odd to get the answer 2\sqrt{3}