subzero0137
- 91
- 4
Find the length of the positive arc of the curve y=cosh^{-1}(x) (for which y≥0) between x=1 and x=\sqrt{5}.
My attempt: x=cosh(y) → \frac{dx}{dy} = sinh(y) → (\frac{dx}{dy})^{2}=sinh^{2}(y), so ds=dy\sqrt{1+sinh^{2}(y)}, therefore the arc length is S=\int_{y=0}^{y=cosh^{-1}(\sqrt{5})} cosh(y) dy= 2. Is this right? Even if it is, is there another method of doing it (e.g. parametric equations)?
My attempt: x=cosh(y) → \frac{dx}{dy} = sinh(y) → (\frac{dx}{dy})^{2}=sinh^{2}(y), so ds=dy\sqrt{1+sinh^{2}(y)}, therefore the arc length is S=\int_{y=0}^{y=cosh^{-1}(\sqrt{5})} cosh(y) dy= 2. Is this right? Even if it is, is there another method of doing it (e.g. parametric equations)?
Last edited by a moderator: