Finding bounds of a centroid problem

  • Thread starter Thread starter Eng67
  • Start date Start date
  • Tags Tags
    Bounds Centroid
Eng67
Messages
21
Reaction score
0
I am having a problem finding the upper and lower (x,y) bounds for this problem.

Find the centroid of r = 1 + cos(theta) which lies in the 1st quadrant.

I come up with (2,0) and (1,0) or the axis intercept points. Is this the correct way to go about it?


m=((∫)[0]^2 ) (∫)[0]^1
 
Physics news on Phys.org
It is simplest to calculate the coordinates of the centroid with the use of polar representation.
As a help, the area of the region is:
\int_{0}^{\frac{\pi}{2}}\int_{0}^{1+\cos\theta}rdrd\theta=\frac{1}{2}\int_{0}^{\frac{\pi}{2}}\frac{3}{2}+2\cos\theta+\frac{\cos{2\theta}}{2}{d\theta}=\frac{3\pi}{8}+1
And, most importantly, remember the relations:
x=r\cos\theta,y=r\sin\theta
 
Last edited:
Thanks so much for the assistance!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top