Finding Common period of multiple waveforms

AI Thread Summary
The discussion focuses on calculating the average power of a system by determining the total energy dissipated in a damper, which involves integrating the square of velocities composed of multiple waveforms with varying frequencies. The challenge arises in finding a common period for these waveforms, particularly when the parameter "n" is allowed to be a decimal, complicating the integration process. The user seeks an analytical solution to avoid computational inefficiencies in their optimization code. They highlight that once a common period T is established, certain integrals can be simplified to zero, allowing for the average power to be calculated over one full cycle. The thread emphasizes the importance of finding T to facilitate accurate energy calculations in oscillatory systems.
macmosher
Messages
4
Reaction score
0
Hi Everyone,

First time poster, longtime viewer of these forums. Love the help that the community gives.

Just so you know where I am coming from:

I am trying to calculate the average power by first calculating the total energy of my system. Specifically I am looking at the energy dissipated in a damper, Cg. This turns out to be Cg multiplied by the integral of the velocity squared in my system over time (where Cg is fixed).

However, each of the velocities of the system are made up of the addition of multiple waveforms oscillating at different frequencies. Their respective periods are as follows:

2Pi/w
2Pi/((n+1)*w)
2Pi/((2n+1)*w)

Where "n" can be any number. In order to take the integration is done properly I need to find a common period amongst the added waveforms (squared). Now, this problem is fine so long as "n" is an integer, but once I allow it to have a decimal value the problem gets a bit more complicated.

This has been racking my brain for the past couple days, any thoughts?

I tried google, but of course it gave me common periods of different types of waves :P

Cheers!
 
Mathematics news on Phys.org
LCM(1.35, 1.7) = LCM(1.3*100, 1.7*100) / 100 = LCM(135, 170) / 100 = 45.9
45.9 / 1.35 = 34
45.9 / 1.7 = 27

lcm(a, b) = a*b / gcd(a, b)
 
Thanks for your reply.

I should have mentioned I am trying to solve this analytically. I am attempting to do the integration analytically so that my optimization code doesn't have to run through it each and every iteration
 
Problem Solved (via problem avoidance)

As mentioned I am trying to find the average power of the summation of multiple wave forms. The problem is essentially this without all the coefficients:
<br /> P_{avg}=\frac{\int_0^T[sin(wt)+sin(w(n+1)t)+sin(w(2n+1)t)]^2}{T}<br />
where T is a common integer multiple of the period amongst the three oscillators. The issue was that it was very difficult to find T analytically.

However, we know once T is found that:

int(sin(wt)*sin(n*wt),t=0..T)=0 so long n is an integer or their is a common period between the two waveforms.

So the whole point of finding T was to have that portion of the integration be zero. We can assume that the T does indeed exist and knowing that because the oscillations are periodic we can take the average of one full cycle rather than "x" number required to have a common period.

Therefore,
<br /> P_{avg}=\frac{\int_0^{\frac{2\pi}{w}} sin^2(wt)dt}{\frac{2\pi}{w}}+\frac{\int_0^{\frac{2\pi}{(n+1)w}} sin^2((n+1)wt)dt}{\frac{2\pi}{(n+1)w}}+\frac{\int_0^{\frac{2\pi}{(2n+1)w}} sin^2((2n+1)wt)dt}{\frac{2\pi}{(2n+1)w}}<br />

Don't know if that will help anyone else with similar problems or not.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top