Finding conditional probability

mckallin
Messages
15
Reaction score
0
Homework Statement
There are w white balls and b black balls in a bowl. Randomly select a ball from the bowl and then return it to the bowl along with n additional balls of the same color. Another single ball is randomly selected from the bowl(now containing w+b+n balls) and it is black. Show that the conditional probability that the first ball selected was white is w/(w+b+n)

The attempt at a solution
This is my last question of my assignment and I can't figure out even how to get the first step. The condition we know here is an event happened afterward, so I am even confused with that. I try to list the sample points which are A(1st-w, 2nd-w), B(1st-w, 2nd-b), C(1st-b, 2nd-b), D(1st-b, 2nd-w), and the possible sample points should be B or D. Then I try the conditional probability for B:

Sample point B :

Being the first selecting:
P(w)=w/(w+b) P(b)=b/(w+b)

By sample point B, it supports that the first selected ball is white, second is black, so using the equation:
P(blw)=P(bnw)/P(w)=P(bnw)/[w/(w+b)]=b/(w+n+b)
so, P(bnw)=[w/(w+b)]*[b/(w+n+b)]

Here it already looks strange because B is just one of the sample points, but I still continue:

P(wlb)=P(wnb)/P(b)={[w/(w+b)]*[b/(w+n+b)]}/[b/(w+b)]=w/(w+b+n)

I got the answer, but I think it is not a correct process because I was just putting something into an equation with no reason. However, when I tried other ways, it even went worse. So is there anyone can give me some ideas just like how I should start to prove and that will be great. Thanks a lot.
 
Physics news on Phys.org
It might help to label the events B1,B2,W1,W2 to avoid confusing them with the parameters w,b - so you're working in the event space {B1,W1}x{B2,W2} and want to calculate P[W1|B2]. It might also help to visualize it by drawing the event tree to work out P[B1nB2] etc before you apply Baye's theorem.
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Back
Top