MHB Finding domain with e functions help

  • Thread starter Thread starter bart11
  • Start date Start date
  • Tags Tags
    Domain Functions
Click For Summary
To find the domain of the function 1/[e^(x+y)-3], it is necessary to solve the inequality e^(x+y) >= 3. This leads to the condition that x + y cannot equal ln(3) since e^(x+y) must not equal 3 to avoid division by zero. The discussion emphasizes the importance of separating x and y to express the function in the form y = f(x) for domain determination. Taking the natural logarithm of both sides is suggested as a method to isolate the variables. Ultimately, the key takeaway is that x + y must be greater than or equal to ln(3) for the function to be defined.
bart11
Messages
6
Reaction score
0
I'm asked to find the domain of 1/[e^(x+y)-3]

Which means I'm solving for e^(x+y)>=3

But how would I go about solving this?
 
Mathematics news on Phys.org
e^(x+y) = e^y*e^x
 
pickslides said:
e^(x+y) = e^y*e^x

Thanks! But hmm, I'm still confused
 
This is supposed to help you separate x & y so you can find a function in the form of y = f(x) and find the domain from there.
 
bart11 said:
I'm asked to find the domain of 1/[e^(x+y)-3]

Which means I'm solving for e^(x+y)>=3

But how would I go about solving this?
The only possible "difficulty" with that is that you cannot divide by 0. That, in turn, means that e^{x+y} cannot be equal to 3. So, what can x+ y not be equal to?

(To solve e^x= a, take the natural logarithm of both sides.)

Pickslide's observation that e^{x+y}= e^xe^y is true but I don't believe using that is particularly useful here.
 
Last edited by a moderator:

Attachments

  • CodeCogsEqn.gif
    CodeCogsEqn.gif
    382 bytes · Views: 79
  • CodeCogsEqn.gif
    CodeCogsEqn.gif
    515 bytes · Views: 93
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
16
Views
3K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K