Dustinsfl
- 2,217
- 5
\begin{bmatrix}<br />
3 & 2\\<br />
4 & 1<br />
\end{bmatrix}
det(A-\lambda I)=\begin{vmatrix}<br /> 3-\lambda & 2\\<br /> 4 & 1-\lambda<br /> \end{vmatrix}=(3-\lambda)(1-\lambda)-8=\lambda^2-4\lambda-5
\lambda_{1}=5 and \lambda_{2}=-1
When \lambda=5, \begin{bmatrix}<br /> -2 & 2\\<br /> 4 & -4<br /> \end{bmatrix}\Rightarrow \begin{bmatrix}<br /> 1 & -1\\<br /> 0 & 0<br /> \end{bmatrix}
The eigenspace for \lambda_{1} is \begin{bmatrix}<br /> 1\\<br /> 1<br /> \end{bmatrix}
When \lambda=-1, \begin{bmatrix}<br /> 4 & 2\\<br /> 4 & 2<br /> \end{bmatrix}\Rightarrow \begin{bmatrix}<br /> 1 & 0\\<br /> 0 & 1<br /> \end{bmatrix}
The eigenspace for\lambda_{2} is \begin{bmatrix}<br /> 0\\<br /> 0<br /> \end{bmatrix}
I don't know what is going wrong but my second Eigenspace is wrong compared to the books answer which is \begin{bmatrix}<br /> 1\\<br /> -2<br /> \end{bmatrix}
det(A-\lambda I)=\begin{vmatrix}<br /> 3-\lambda & 2\\<br /> 4 & 1-\lambda<br /> \end{vmatrix}=(3-\lambda)(1-\lambda)-8=\lambda^2-4\lambda-5
\lambda_{1}=5 and \lambda_{2}=-1
When \lambda=5, \begin{bmatrix}<br /> -2 & 2\\<br /> 4 & -4<br /> \end{bmatrix}\Rightarrow \begin{bmatrix}<br /> 1 & -1\\<br /> 0 & 0<br /> \end{bmatrix}
The eigenspace for \lambda_{1} is \begin{bmatrix}<br /> 1\\<br /> 1<br /> \end{bmatrix}
When \lambda=-1, \begin{bmatrix}<br /> 4 & 2\\<br /> 4 & 2<br /> \end{bmatrix}\Rightarrow \begin{bmatrix}<br /> 1 & 0\\<br /> 0 & 1<br /> \end{bmatrix}
The eigenspace for\lambda_{2} is \begin{bmatrix}<br /> 0\\<br /> 0<br /> \end{bmatrix}
I don't know what is going wrong but my second Eigenspace is wrong compared to the books answer which is \begin{bmatrix}<br /> 1\\<br /> -2<br /> \end{bmatrix}