iamsmooth
- 103
- 0
Homework Statement
Let A = \left[ \begin{array}{cc} -6 & 0.25 \\ 7 & -3 \end{array} \right]
Find an invertible S and a diagonal D such that S^{-1}AS=D
Homework Equations
...
The Attempt at a Solution
So first I need to get eigenvalues so I can get the eigenvectors which will give me the invertible S (or so I believe).
Anyways, here is my work so far:
A = \left[ \begin{array}{cc} -6 & 0.25 \\ 7 & -3 \end{array} \right] = \left[ \begin{array}{cc} \lambda+6 & -0.25 \\ -7 & \lambda+3 \end{array} \right]<br />
<br /> (\lambda+6)(\lambda+3)-1.75
<br /> \lambda^2+3\lamda+6\lambda+18-1.75
\lambda^2+9\lambda+16.25
Using quadratic equation or factoring, the roots are:
\lambda=-2.5
\lambda=-6.5
From here, subbing lambda in, I get:
<br /> \left[ \begin{array}{cc} -2.5+6 & -0.25 \\ -7 & -2.5+3 \end{array} \right] \left[ \begin{array}{cc} X_1 \\ X_2 \\ \end{array} \right]
<br /> \left[ \begin{array}{cc} -6.5+6 & -0.25 \\ -7 & -6.5+3 \end{array} \right] \left[ \begin{array}{cc} X_1 \\ X_2 \end{array} \right]<br />
Solving for these systems I get:
<br /> E_{-2.5} = \left[ \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right]
<br /> E_{-6.5} = \left[ \begin{array}{cc} 1 & 0.5 \\ 0 & 0 \end{array} \right]
From here, how do I get the eigenvectors? I think I'm close (if my work is correct so far)
Last edited: