- #1
iamsmooth
- 103
- 0
Homework Statement
Let [tex] A = \left[ \begin{array}{cc} -6 & 0.25 \\ 7 & -3 \end{array} \right][/tex]
Find an invertible S and a diagonal D such that [tex]S^{-1}AS=D[/tex]
Homework Equations
...
The Attempt at a Solution
So first I need to get eigenvalues so I can get the eigenvectors which will give me the invertible S (or so I believe).
Anyways, here is my work so far:
[tex] A = \left[ \begin{array}{cc} -6 & 0.25 \\ 7 & -3 \end{array} \right] = \left[ \begin{array}{cc} \lambda+6 & -0.25 \\ -7 & \lambda+3 \end{array} \right]
[/tex]
[tex]
(\lambda+6)(\lambda+3)-1.75[/tex]
[tex]
\lambda^2+3\lamda+6\lambda+18-1.75[/tex]
[tex]\lambda^2+9\lambda+16.25[/tex]
Using quadratic equation or factoring, the roots are:
[tex]\lambda=-2.5[/tex]
[tex]\lambda=-6.5[/tex]
From here, subbing lambda in, I get:
[tex]
\left[ \begin{array}{cc} -2.5+6 & -0.25 \\ -7 & -2.5+3 \end{array} \right] \left[ \begin{array}{cc} X_1 \\ X_2 \\ \end{array} \right][/tex]
[tex]
\left[ \begin{array}{cc} -6.5+6 & -0.25 \\ -7 & -6.5+3 \end{array} \right] \left[ \begin{array}{cc} X_1 \\ X_2 \end{array} \right]
[/tex]
Solving for these systems I get:
[tex]
E_{-2.5} = \left[ \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right][/tex]
[tex]
E_{-6.5} = \left[ \begin{array}{cc} 1 & 0.5 \\ 0 & 0 \end{array} \right][/tex]
From here, how do I get the eigenvectors? I think I'm close (if my work is correct so far)
Last edited: