Finding Final Temp. Distribution After Thermal Equilibrium

AI Thread Summary
The discussion focuses on finding the final temperature distribution after thermal equilibrium in an isolated system. It emphasizes that while thermal energy is conserved, temperature is not, leading to confusion about the correct approach. The initial energy calculations for two materials are presented, but the method used is acknowledged as incorrect. The correct understanding involves recognizing that the total internal energy remains constant and that the system will reach a uniform temperature at maximum entropy. The final equilibrium temperature can be determined by equating the initial and final energy states.
niazaliahmed
Messages
2
Reaction score
0
QscNm.png


The above diagram shows the problem description.

I have to find the final temperature distribution after thermal equilibrium.

I am assuming that the thermal energy is conserved but not the temperature.(Correct me if I am wrong)

Energy of the materials at initial state is (Refer Image)

For material 1 - m.Cp.T = 100*1*45 W = 4500W
For material 2 - m.Cp.T = 200*1*50 W = 10000W

So the system would achieve equilibrium when the energy in both material are same i.e. 7250W

If that happens Material 1 would be at a temperature of 72.5 C
Material 2 would be at a temperature of 36.25 C

I know that this method is wrong indeed. But can anyone explain me why we would conserve the temperature instead of energy of the system??
 
Science news on Phys.org
For starters the correct unit of energy is Joules(J) not Watts(W). The correct unit of temperature is Kelvin(K) not Celsius(C). If I remember correctly you add 273 to a temperature in C to get it into K.

Since the system (meaning both blocks) is isolated, the the total internal energy must remain constant. An isolated system will eventually reach a state of maximum entropy (and therefore uniform temperature).

So the initial energy in the system is:

m1c1T1 + m1c1T2 = a constant

and after reaching equilibrium

(m1c1+m2c2)T = the same constant

thus equate the two and solve for T.
 
That was helpful, thanks
 
I need to calculate the amount of water condensed from a DX cooling coil per hour given the size of the expansion coil (the total condensing surface area), the incoming air temperature, the amount of air flow from the fan, the BTU capacity of the compressor and the incoming air humidity. There are lots of condenser calculators around but they all need the air flow and incoming and outgoing humidity and then give a total volume of condensed water but I need more than that. The size of the...
Thread 'Why work is PdV and not (P+dP)dV in an isothermal process?'
Let's say we have a cylinder of volume V1 with a frictionless movable piston and some gas trapped inside with pressure P1 and temperature T1. On top of the piston lay some small pebbles that add weight and essentially create the pressure P1. Also the system is inside a reservoir of water that keeps its temperature constant at T1. The system is in equilibrium at V1, P1, T1. Now let's say i put another very small pebble on top of the piston (0,00001kg) and after some seconds the system...
Back
Top