Finding Frequencies for Wave Sum Vanishing at x=0,L

AI Thread Summary
To find a second wave that, when summed with the first, vanishes at x = 0 and x = L, the equations derived from the wave functions must be solved. The user has set up the problem correctly by defining two waves with appropriate parameters. It is suggested to factor out common elements in the equations to simplify the process. Additionally, the fixed phase speed c indicates that the frequencies must be the same, leading to limited choices for the wave number k'. The discussion emphasizes the importance of solving the equations to determine the valid frequencies.
JuanYsimura
Messages
5
Reaction score
0
1. Homework Statement

Write a wave in one space dimension as ARe(ei(kx-wt-d))where A is the
amplitude of the wave. Find a second wave of the same frequency such that
the sum of the two vanishes at x = 0 and x = L. Assuming the wave velocity
c = w/|k| is fixed, for what frequencies ! is this possible?



3. The Attempt at a Solution

My attempt: I Let x1 = ARe(ei(kx-wt+d)) be wave 1 and x2 = A'Re(ei(kx-wt+d')) be wave 2.
since they vanish at x=0,L, I obtained the following equations:
ARe(ei(-wt+d))+A'Re(ei(-wt+d)) = 0 and ARe(ei(Lk-wt+d))+A'Re(ei(Lk-wt+d)) = 0.
My question is: should I solve this equations and find the frequencies that satisfy this equation ?? Am I in the right path to solve the problems? Id Like to hear different opinions and different approaches.

Thanks,

Juan
 
Physics news on Phys.org
You're on the right path.

Two hints:

1. Factor out everything that you can. Some factors can make 0 and others never can.
2. The fixed phase speed c and the fact that the frequency w must be the same for both waves mean there are only a couple possible choices for k'.
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanged mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top