The_Iceflash
- 50
- 0
I for the most part have this completed but I have a small question and thus checking if I did this correctly.
Given the Sequence = \frac{n}{n+2} \approx_{\epsilon} 1 , for n >> 1
Show what index if \epsilon = .001
" " if \epsilon = .000002
" " for any \epsilon > 0
N/A
for \epsilon = .001 I did:
\left|\frac{n}{n+2}-1\right|< .001
\left|\frac{-2}{n+2}\right| < .001
\frac{2}{n+2} < .001
\frac{2}{n+2} < \frac{1}{1000}
\frac{n+2}{2} > 1000
n+2 > 2000
n > 1998
The only issue I have with this one and the next one is that they aren't decreasing and I'm not sure if it needs to be or not:
\frac{1999}{1999+2} = .9990004998
\frac{2000}{2000+2} = .9990009990
for \epsilon = .000002 I did:
\left|\frac{n}{n+2}-1\right|< .000002
\left|\frac{-2}{n+2}\right| < .000002
\frac{2}{n+2} < .000002
\frac{2}{n+2} < \frac{2}{1000000}
\frac{n+2}{2} > \frac{1000000}{2}
n+2 > 1000000
n > 999998<br /> <br /> <b>for any \epsilon &gt; 0</b><br /> <br /> \left|\frac{n}{n+2}-1\right|&amp;lt; \epsilon<br /> <br /> \left|\frac{-2}{n+2}\right| &amp;lt; \epsilon<br /> <br /> \frac{2}{n+2} &amp;lt; \epsilon<br /> <br /> \frac{n+2}{2} &amp;gt; \frac{1}{\epsilon}<br /> <br /> n+2 &amp;gt; \frac{2}{\epsilon}<br /> <br /> n &amp;gt; \frac{2}{\epsilon}-2
Homework Statement
Given the Sequence = \frac{n}{n+2} \approx_{\epsilon} 1 , for n >> 1
Show what index if \epsilon = .001
" " if \epsilon = .000002
" " for any \epsilon > 0
Homework Equations
N/A
The Attempt at a Solution
for \epsilon = .001 I did:
\left|\frac{n}{n+2}-1\right|< .001
\left|\frac{-2}{n+2}\right| < .001
\frac{2}{n+2} < .001
\frac{2}{n+2} < \frac{1}{1000}
\frac{n+2}{2} > 1000
n+2 > 2000
n > 1998
The only issue I have with this one and the next one is that they aren't decreasing and I'm not sure if it needs to be or not:
\frac{1999}{1999+2} = .9990004998
\frac{2000}{2000+2} = .9990009990
for \epsilon = .000002 I did:
\left|\frac{n}{n+2}-1\right|< .000002
\left|\frac{-2}{n+2}\right| < .000002
\frac{2}{n+2} < .000002
\frac{2}{n+2} < \frac{2}{1000000}
\frac{n+2}{2} > \frac{1000000}{2}
n+2 > 1000000
n > 999998<br /> <br /> <b>for any \epsilon &gt; 0</b><br /> <br /> \left|\frac{n}{n+2}-1\right|&amp;lt; \epsilon<br /> <br /> \left|\frac{-2}{n+2}\right| &amp;lt; \epsilon<br /> <br /> \frac{2}{n+2} &amp;lt; \epsilon<br /> <br /> \frac{n+2}{2} &amp;gt; \frac{1}{\epsilon}<br /> <br /> n+2 &amp;gt; \frac{2}{\epsilon}<br /> <br /> n &amp;gt; \frac{2}{\epsilon}-2
Last edited: