Finding inverse metric tensor when there are off-diagonal terms

Nabigh R
Messages
11
Reaction score
0
How do you find the inverse of metric tensor when there are off-diagonals?
More specifivally, given the (Kerr) metric,
$$ d \tau^2 = g_{tt} dt^2 + 2g_{t \phi} dt d\phi +g_{rr} dr^2 + g_{\theta \theta} d \theta^2 + g_{\phi \phi} d \phi^2 + $$
we have the metric tensor;
$$ g_{\mu \nu} = \begin{pmatrix}
g_{tt} & 0 & 0 & g_{t \phi} \\
0 & g_{rr} & 0 & 0 \\
0 & 0 & g_{\theta \theta} & 0 \\
g_{\phi t} & 0 & 0 & g_{\phi \phi} \\
\end{pmatrix} $$
In "A First Course in General Relativity", Schutz say that since the only off-diagonal element involves ##t## and ##\phi##, the contravariant components ##g^{rr}## and ##g^{\theta \theta}## are given by ##g^{rr} = \frac{1}{g_{rr}}## and ##g^{\theta \theta} = \frac{1}{g_{\theta \theta}}##. And then invert the matrix
\begin{pmatrix}
g_{tt} & g_{t \phi} \\
g_{\phi t} & g_{\phi \phi} \\
\end{pmatrix}
to find ##g^{tt}##, ##g^{\phi t}## and ## g^{\phi \phi} ##. I don't get why we can do that. Is it some kind on generalised version for the inverse of a diagonal matrix.
If ## A = \begin{pmatrix}
a_{11} & 0 & 0 & 0 \\
0 & a_{22} & 0 & 0 \\
0 & 0 & a_{33} & 0 \\
0 & 0 & 0 & a_{44} \\
\end{pmatrix} ##
then ## A^{-1} = \begin{pmatrix}
\frac{1}{a_{11}} & 0 & 0 & 0 \\
0 & \frac{1}{a_{22}} & 0 & 0 \\
0 & 0 & \frac{1}{a_{33}} & 0 \\
0 & 0 & 0 & \frac{1}{a_{44}} \\
\end{pmatrix} ##
 
Physics news on Phys.org
Thanks Mentz :-D I know I can get ##g^{\mu \nu}## by inverting the matrix representation of ##g_{\mu \nu}##. But what I want to know is reasoning Schutz used to simplify the problem of finding the inverse of a ##4 \times 4## matrix to that of finding the inverse of a ##2 \times 2## matrix :-)
If there is a general theorem or something that allows it, then it sure can save me a lot of work.
 
It's perhaps easier to see by writing the coordinates in a different order:
$$ g_{\mu \nu} = \begin{pmatrix}
g_{tt} & g_{t \phi} & 0 & 0 \\
g_{\phi t} & g_{\phi \phi} & 0 & 0 \\
0 & 0 & g_{\theta \theta} & 0 \\
0 & 0 & 0 & g_{rr} \\
\end{pmatrix} $$
and the observation that if you can decompose a matrix into smaller sub-matrices
$$ \textbf{A} = \left( \begin{array}{c|c}
\textbf{P} & \textbf{0} \\
\hline
\textbf{0} & \textbf{Q}
\end{array} \right) $$
then it inverts as
$$ \textbf{A}^{-1} = \left( \begin{array}{c|c}
\textbf{P}^{-1} & \textbf{0} \\
\hline
\textbf{0} & \textbf{Q}^{-1}
\end{array} \right) $$
(then finally put the coordinates back into the original order).
 
  • Like
Likes etotheipi
Thanks a lot Greg. That's just what I was looking for. Just saw blockwise inversion theorem of matrices on Wikipedia. Since it didn't occur me to change the order of coordinates, I didn't make the connection. Thanks again :approve:
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
Back
Top