Finding inverse metric tensor when there are off-diagonal terms

Nabigh R
Messages
11
Reaction score
0
How do you find the inverse of metric tensor when there are off-diagonals?
More specifivally, given the (Kerr) metric,
$$ d \tau^2 = g_{tt} dt^2 + 2g_{t \phi} dt d\phi +g_{rr} dr^2 + g_{\theta \theta} d \theta^2 + g_{\phi \phi} d \phi^2 + $$
we have the metric tensor;
$$ g_{\mu \nu} = \begin{pmatrix}
g_{tt} & 0 & 0 & g_{t \phi} \\
0 & g_{rr} & 0 & 0 \\
0 & 0 & g_{\theta \theta} & 0 \\
g_{\phi t} & 0 & 0 & g_{\phi \phi} \\
\end{pmatrix} $$
In "A First Course in General Relativity", Schutz say that since the only off-diagonal element involves ##t## and ##\phi##, the contravariant components ##g^{rr}## and ##g^{\theta \theta}## are given by ##g^{rr} = \frac{1}{g_{rr}}## and ##g^{\theta \theta} = \frac{1}{g_{\theta \theta}}##. And then invert the matrix
\begin{pmatrix}
g_{tt} & g_{t \phi} \\
g_{\phi t} & g_{\phi \phi} \\
\end{pmatrix}
to find ##g^{tt}##, ##g^{\phi t}## and ## g^{\phi \phi} ##. I don't get why we can do that. Is it some kind on generalised version for the inverse of a diagonal matrix.
If ## A = \begin{pmatrix}
a_{11} & 0 & 0 & 0 \\
0 & a_{22} & 0 & 0 \\
0 & 0 & a_{33} & 0 \\
0 & 0 & 0 & a_{44} \\
\end{pmatrix} ##
then ## A^{-1} = \begin{pmatrix}
\frac{1}{a_{11}} & 0 & 0 & 0 \\
0 & \frac{1}{a_{22}} & 0 & 0 \\
0 & 0 & \frac{1}{a_{33}} & 0 \\
0 & 0 & 0 & \frac{1}{a_{44}} \\
\end{pmatrix} ##
 
Physics news on Phys.org
Thanks Mentz :-D I know I can get ##g^{\mu \nu}## by inverting the matrix representation of ##g_{\mu \nu}##. But what I want to know is reasoning Schutz used to simplify the problem of finding the inverse of a ##4 \times 4## matrix to that of finding the inverse of a ##2 \times 2## matrix :-)
If there is a general theorem or something that allows it, then it sure can save me a lot of work.
 
It's perhaps easier to see by writing the coordinates in a different order:
$$ g_{\mu \nu} = \begin{pmatrix}
g_{tt} & g_{t \phi} & 0 & 0 \\
g_{\phi t} & g_{\phi \phi} & 0 & 0 \\
0 & 0 & g_{\theta \theta} & 0 \\
0 & 0 & 0 & g_{rr} \\
\end{pmatrix} $$
and the observation that if you can decompose a matrix into smaller sub-matrices
$$ \textbf{A} = \left( \begin{array}{c|c}
\textbf{P} & \textbf{0} \\
\hline
\textbf{0} & \textbf{Q}
\end{array} \right) $$
then it inverts as
$$ \textbf{A}^{-1} = \left( \begin{array}{c|c}
\textbf{P}^{-1} & \textbf{0} \\
\hline
\textbf{0} & \textbf{Q}^{-1}
\end{array} \right) $$
(then finally put the coordinates back into the original order).
 
  • Like
Likes etotheipi
Thanks a lot Greg. That's just what I was looking for. Just saw blockwise inversion theorem of matrices on Wikipedia. Since it didn't occur me to change the order of coordinates, I didn't make the connection. Thanks again :approve:
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Back
Top