Finding k for Matrix: No Solutions, Infinite Solutions, Unique Solution

  • Thread starter Thread starter mr_coffee
  • Start date Start date
  • Tags Tags
    Infinite Matrix
mr_coffee
Messages
1,613
Reaction score
1
OKay I'm trying to find a value of k in which this matrix is a) no solutions, b) infinite many solutions, and c) a unqiue solution, what do i do once i find the determinant? i used cramers rule:
http://img492.imageshack.us/img492/8854/lastscan4pp.jpg
THanks.
Oh yeah in the picture it should be the detZ/detA
 
Last edited by a moderator:
Physics news on Phys.org
n/m i got it, thanks!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top