Rozenwyn
- 31
- 0
c(t)=t^2\cos{t}.i+t^2\sin{t}.j+2t.k, and 0 \leq{t} \leq1
Firstly, L(c) = \int_{0}_{1} || c'(t) ||.dt
Then, =\int_{0}^{1} || (-t^{2} \sin{t} + 2t \cos{t} ) i + (t^{2} \cos{t} + 2t \sin{t}) j + 2k || dt
Skipping one step, this simplifies to;
\int_{0}^{1} \sqrt{t^4 + 4t^2 + 4} .dt
\int_{0}^1 t^2+2.dt
\left[ \frac{t^3}{3} + 2t \right]_{0}^{1} = 1/3 + 2 = 7/3
Well, yeah is this correct ?
Let's see, I hope I didn't mess up the latex code.
Firstly, L(c) = \int_{0}_{1} || c'(t) ||.dt
Then, =\int_{0}^{1} || (-t^{2} \sin{t} + 2t \cos{t} ) i + (t^{2} \cos{t} + 2t \sin{t}) j + 2k || dt
Skipping one step, this simplifies to;
\int_{0}^{1} \sqrt{t^4 + 4t^2 + 4} .dt
\int_{0}^1 t^2+2.dt
\left[ \frac{t^3}{3} + 2t \right]_{0}^{1} = 1/3 + 2 = 7/3
Well, yeah is this correct ?
Let's see, I hope I didn't mess up the latex code.
Last edited: