indigojoker
- 240
- 0
I need to find the number variance \langle (\Delta N ) ^2 \rangle for the state | \beta \rangle = e^{\alpha a^{\dagger}-\alpha^{*} a}|1 \rangle
we know:
\langle (\Delta N ) ^2 \rangle
\langle a^{\dagger} a a^{\dagger} a \rangle
\langle a^{\dagger} (a^{\dagger}a +1) a \rangle
\langle a^{\dagger} a^{\dagger}a a+a^{\dagger} a \rangle
\langle \beta| a^{\dagger} (a^{\dagger}a +1) a |\beta \rangle
I know the relation (since this was derived):
[a^{\dagger},e^{\alpha a}]=-\alpha e^{\alpha a}
[a,e^{\alpha a^{\dagger}}]=\alpha e^{\alpha a^{\dagger}}
I could expand:
\langle 1|e^{\alpha a^{\dagger}-\alpha^{*} a} a^{\dagger} (a^{\dagger}a +1) a e^{\alpha a^{\dagger}-\alpha^{*} a}|1 \rangle
But I'm not sure how to apply the relation. any ideas would be appreciated.
we know:
\langle (\Delta N ) ^2 \rangle
\langle a^{\dagger} a a^{\dagger} a \rangle
\langle a^{\dagger} (a^{\dagger}a +1) a \rangle
\langle a^{\dagger} a^{\dagger}a a+a^{\dagger} a \rangle
\langle \beta| a^{\dagger} (a^{\dagger}a +1) a |\beta \rangle
I know the relation (since this was derived):
[a^{\dagger},e^{\alpha a}]=-\alpha e^{\alpha a}
[a,e^{\alpha a^{\dagger}}]=\alpha e^{\alpha a^{\dagger}}
I could expand:
\langle 1|e^{\alpha a^{\dagger}-\alpha^{*} a} a^{\dagger} (a^{\dagger}a +1) a e^{\alpha a^{\dagger}-\alpha^{*} a}|1 \rangle
But I'm not sure how to apply the relation. any ideas would be appreciated.