bologna121121
- 9
- 0
Homework Statement
Two masses, one of m_{1}= 3kg, the other of m_{2}=4kg, hang from opposite sides of a pulley of radius .15m. When released from rest, the heavier mass falls .34m in 4s. What is the rotational inertia of the pulley?
Homework Equations
Newton's second law and \tau = I\alpha
The Attempt at a Solution
I tried using Newton's 2nd law on each of the masses:
T_{1} - m_{1}g = m_{1}a
m_{2}g - T_{2} = m_{1}a
where T_{1} and T_{2} are the tensions of the rope on each mass.
solving for these tensions yields
T_{1} = m_{1}(g+a)
T_{2} = m_{2}(g-a)
I originally planned to plug these into \tau = I\alpha and use linear kinematics equations to solve for the acceleration and therefore the angular acceleration, but it is clear that T_{1} is greater than T_{2} something seems to have gone wrong, because wouldn't this imply that, through Newton's third law, the net torque would be causing m_{1}, the lighter block, to fall? Thanks for the help.