Finding n for Arc Length of $\pi+e$ over Interval 0 to 6

Trepidation
Messages
29
Reaction score
0
\int^{6}_{0} \sqrt{1-n^2x^2}dx=\pi+e


I need to solve this for n. I believe there should only be one possible function of the form y=x^n that gives an arclength of \pi+e over the interval x=0 to x=6, and wish to find the value of n that such a function must have.
Does anyone know how to do this? I haven't the slightest idea, as I only know as much calculus as I've managed to teach myself over the past few months... Thank you!


Ah, additionally, I'm assuming (as I, regrettably, read somewhere) that

\int^{b}_{a} \sqrt{1-[f'(x)]^2}dx

is equal to arclength (actually, I didn't just accept it completely--I lack the mathematics to evaluate whether or not it actually is such a formula, but my TI-89 is capable of calculating for whatever values I plug in so... They have thus far matched up perfectly with the values produced by the method I came up with myself:)

\lim_{x \rightarrow 0}\sum^{\frac{m}{x}-1}_{n=0}\sqrt{x^2+(f(x(n+1))-f(nx))^2}

Anyway, again, thank you.
 
Last edited:
Mathematics news on Phys.org
Well the integral is well-known, you'll get an arcsin and square root part so evaluating the integral isn't really a problem. I doubt though that you'll be able to solve for n analytically, after that - unless a numerical approximation would satisfy you.
 
Thank you, TD... Mm... Why not, and how would you get a numerical approximation?
 
The easy way, of course, would be relying on a computer program. I tried it with Mathematica.

Integration yields

\int\limits_0^6 {\sqrt {1 - n^2 x^2 } dx} = 3\sqrt {1 - 36n^2 } + \frac{{\arcsin \left( {6n} \right)}}<br /> {{2n}}

So what you want to solve for n is

3\sqrt {1 - 36n^2 } + \frac{{\arcsin \left( {6n} \right)}}<br /> {{2n}} = e + \pi
 
Last edited:
This is an interesting problem. I found that n is approx. 1000/16201, but I haven't found an elegant solution for n.
 
I refined my solution to:

n \approx {10000000 \over 162011025}
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top