Finding Patterns in Multiple Dice Rolls: A Simple Solution

rbzima
Messages
83
Reaction score
0
So, I'm having trouble seeing a pattern in this small analysis and was wondering if anyone might be able to lend a hand.

Suppose I toss a die with a result of n points. Then, whatever those n points are determines the number of dice you throw a second time. If the sum of your second throw is under 12, you lose, if it's 12, you win nothing, and if it's higher than 12, you win.

I have all the probabilities of 3 dice, but was wondering if there's a simpler way of finding the other probabilities? Since there are 18 possible numbers with 3 dice, I found that the triangular numbers starting with P(rolling a 3) for three dice is obviously 1/216, then P(rolling a 4) with 3 dice is 3 ways. Am I right to assume that there are then 6 ways for P(rolling a 5) and 10 ways for P(rolling a 6) until I reach the P(rolling a 9) because at that point the numbers are different as a result of having only six sided dice. Is there any way I might be able to see the others until I'm up to 6 dice.

I realize its far easier to find the lower numbers as I use more dice. Am I right to conclude this works for all scenarios up till 6 dice?
 
Physics news on Phys.org
I have, I think a simple way. Given one die, we have \sum_1^6 j=21. Dividing by 6 gives the average value of 3.5.

We can just start with that. Thus tossing a die gives the likelyhood of 3.5, which means half the time it is 3 and half the time it is 4, probably. So that on the whole we arrive at \frac{3(3.5)+4(3.5)}{2} =(3.5)^2 =12.25. (If in one case it was 2 and 5 rolls, it would average out to the same value above.)
 
Last edited:
robert Ihnot said:
I have, I think a simple way. Given one die, we have \sum_1^6 j=21. Dividing by 6 gives the average value of 3.5.

We can just start with that. Thus tossing a die gives the likelyhood of 3.5, which means half the time it is 3 and half the time it is 4, probably. So that on the whole we arrive at \frac{3(3.5)+4(3.5)}{2} =(3.5)^2 =12.25. (If in one case it was 2 and 5 rolls, it would average out to the same value above.)

NM, this is actually incorrect. I found an neat and easy way to solve this problem. The thing is, I need all the probabilities of multiple dice in play at the same time, and expected value is simply the payout times whatever the various probabilities are. It's alright though, because I found a nice pattern with the probabilities with 1 dice and 2 dice, and I tested it for 3 dice and sure enough, it works. Thanks for the suggestion though!
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top