I Finding Perpendicular Spirals in a Family of Curves

AI Thread Summary
The discussion centers on finding a family of curves where the tangents at corresponding points are always perpendicular. The initial hypothesis suggests that spirals, either sinking into or out of a point, may fulfill this condition. The mathematical approach involves analyzing the slopes of two adjacent curves and establishing the relationship required for perpendicularity. A key point raised is the need for the curves to intersect at a single point while being identical through rotation around that point. The family of circles is proposed as a sufficient condition for achieving the desired perpendicular tangents.
IWantToLearn
Messages
95
Reaction score
0
I am looking for a family of curves where if we consider one curve of them and get the tangent of that curve at any arbitrary point on the curve, then you will always find a point in the other curves where the tangent of this point is perpendicular to the tangent of the first point.

My guess for the solution of this, is that i am looking for a family of spirals that is sink in or out of some point.
but this is just a guess without any rigorous prove,

I tried this:
let ##y_n## be the family of curves, consider two adjacent curves ##y_1 (x)## and ##y_2 (x)##, and that first derivatives (slopes of the tangents) are ##y^\prime_1## and ##y^\prime_2##

for those two tangents to be perpendicular we must have ##y^\prime_1 y^\prime_2 = -1##

lets consider ##S## an equal distance around the curves, where ##S_1 = S_2 = S##, then we have :

##S_1 = \int_{x_1}^{x_2} \sqrt{1+{y^\prime_1}^2} \, dx##
##S_2 = \int_{x_3}^{x_4} \sqrt{1+{y^\prime_2}^2} \, dx##

Assuming we know all the integration boundaries ##x_1,x_2,x_3,x_4##
so we can write

##\int_{x_1}^{x_2} \sqrt{1+{y^\prime_1}^2} \, dx = \int_{x_3}^{x_4} \sqrt{1+\frac{1}{{y^\prime_1}^2}} \, dx##

but i don't know what to do next?
 
Mathematics news on Phys.org
tangents.jpg
 
thank you for your interest in the question, i was not quite clear in stating the problem, by family of curves i mean a family curves that all intersect at one single point, and they are identical such that you can have them all by rotating one of them around an axis at the point of intersection.

something like this
https://www.google.com/search?q=rot...m=isch&q=rotated+curves&imgrc=6pYzj4IXzb-XsM:
 
IWantToLearn said:
you will always find a point in the other curves where the tangent of this point is perpendicular to the tangent of the first point.
A sufficient condition would be that for any given slope and any given curve there is a point on the curve at which the tangent has that slope. The family of circles of a given radius and passing through a common point would do.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top