What is the significance of V(0) = -j in finding position vector?

Miike012
Messages
1,009
Reaction score
0
Problem: Find position vector given
a(t) [ look in paint doc]
v(0) = i,
r(0) = j

I highlighted a portion in the paint doc that I have a question for. Why V(0) = -j + C? = i?
Where did they get the -j??

Thank you.
 

Attachments

  • acceleration.jpg
    acceleration.jpg
    10.8 KB · Views: 480
Physics news on Phys.org
Never mind I got it
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top