TadeusPrastowo
- 21
- 0
Homework Statement
The Wikipedia article on spatial rigid body dynamics derives the equation of motion \boldsymbol\tau = <i>\boldsymbol\alpha + \boldsymbol\omega\times<i>\boldsymbol\omega</i></i> from \sum_{i=1}^n \boldsymbol\Delta\mathbf{r}_i\times (m_i\mathbf{a}_i).
But, there is another way to derive the same result from \frac{\text{d}\mathbf{L}}{\text{d}t} = \frac{\text{d}}{\text{d}t}\left(<i>\boldsymbol\omega\right)</i>. Can it be derived by performing element-by-element derivation of the moment of inertia tensor?
Homework Equations
- \frac{\text{d}}{\text{d}t}\left(<i>\boldsymbol\omega\right) = \frac{\text{d}<i>}{\text{d}t}\boldsymbol\omega + <i>\frac{\text{d}\boldsymbol\omega}{\text{d}t}</i></i></i>
[*]\frac{\text{d}<i>}{\text{d}t} = [\omega]_\times\,<i> + <i>\,[\omega]_\times</i></i></i> as shown in Point 5 of this article.
The Attempt at a Solution
\begin{align}<br /> \frac{\text{d}}{\text{d}t}\left(<i>\boldsymbol\omega\right) &= \frac{\text{d}<i>}{\text{d}t}\boldsymbol\omega + <i>\frac{\text{d}\boldsymbol\omega}{\text{d}t} \\<br /> &= \frac{\text{d}<i>}{\text{d}t}\boldsymbol\omega + <i>\boldsymbol\alpha \\<br /> \end{align}</i></i></i></i></i>
Now, I am focusing on solving \frac{\text{d}<i>}{\text{d}t}</i> with the goal of obtaining [\omega]_\times\,<i> + <i>\,[\omega]_\times</i></i>.
I perform element-by-element derivation of the moment of inertia tensor as follows:
<br /> \begin{align}<br /> \frac{\text{d}}{\text{d}t}\left(\begin{bmatrix}<br /> I_{1,1} & I_{1,2} & I_{1,3} \\<br /> I_{2,1} & I_{2,2} & I_{2,3} \\<br /> I_{3,1} & I_{3,2} & I_{3,3} \\<br /> \end{bmatrix}\right) &= \begin{bmatrix}<br /> \frac{\text{d}\,I_{1,1}}{\text{d}t} & \frac{\text{d}\,I_{1,2}}{\text{d}t} & \frac{\text{d}\,I_{1,3}}{\text{d}t} \\<br /> \frac{\text{d}\,I_{2,1}}{\text{d}t} & \frac{\text{d}\,I_{2,2}}{\text{d}t} & \frac{\text{d}\,I_{2,3}}{\text{d}t} \\<br /> \frac{\text{d}\,I_{3,1}}{\text{d}t} & \frac{\text{d}\,I_{3,2}}{\text{d}t} & \frac{\text{d}\,I_{3,3}}{\text{d}t} \\<br /> \end{bmatrix}<br /> \end{align}<br />
where the moment of inertia tensor is as follows: I_{i,j} = \sum_p m_p\,\left(\delta_{i,j} \sum_k r_k^2 - r_i\,r_j\right)
Then, I calculated the above one as follows:
\begin{align}<br /> \frac{\text{d}I_{i,j}}{\text{d}t} &= \frac{\text{d}}{\text{d}t}\left(\sum_p m_p\,\left(\delta_{i,j} \sum_k r_k^2 - r_i\,r_j\right)\right) \\<br /> &= \sum_p m_p \frac{\text{d}}{\text{d}t}\,\left(\delta_{i,j} \sum_k r_{p,k}^2 \right) - \frac{\text{d}}{\text{d}t}\,(r_{p,i}\,r_{p,j}) \\<br /> &= \sum_p m_p \delta_{i,j} \frac{\text{d}}{\text{d}t}\, \left(\sum_k r_{p,k}^2\right) - \frac{\text{d}}{\text{d}t}\,(r_{p,i}\,r_{p,j}) \\<br /> &= \sum_p m_p \delta_{i,j} \sum_k \frac{\text{d}}{\text{d}t}\,(r_{p,k}^2) - \frac{\text{d}}{\text{d}t}\,(r_{p,i}\,r_{p,j}) \\<br /> &= \sum_p m_p \delta_{i,j} \sum_k \frac{\text{d}\,r_{p,k}^2}{\text{d}r_{p,k}} \frac{\text{d} \,r_{p,k}} { \text{d}t} - \frac{\text{d}}{\text{d}t}\,(r_{p,i}\,r_{p,j}) \\<br /> &= \sum_p m_p \delta_{i,j} \sum_k 2\,r_{p,k}\,\omega_k - (\omega_i\,r_{p,j} + r_{p,i}\,\omega_j) \\<br /> \frac{\text{d}\text{I}_{i,j}}{\text{d}t} &= \sum_p m_p \begin{bmatrix}<br /> 2\,r_{p,2}\,\omega_2 + 2\,r_{p,3}\,\omega_3 & -(r_{p,1}\,\omega_2 + r_{p,2}\,\omega_1) & -(r_{p,1}\,\omega_3 + r_{p,3}\,\omega_1) \\<br /> -(r_{p,2}\,\omega_1 + r_{p,1}\,\omega_2) & 2\,r_{p,1}\,\omega_1 + 2\,r_{p,3}\,\omega_3 & -(r_{p,2}\,\omega_3 + r_{p,3}\,\omega_2) \\<br /> -(r_{p,3}\,\omega_1 + r_{p,1}\,\omega_3) & -(r_{p,3}\,\omega_2 + r_{p,2}\,\omega_3) & 2\,r_{p,1}\omega_1 + 2\,r_{p,2}\,\omega_2<br /> \end{bmatrix}<br /> \end{align}<br />
But, after trying some factorizations, I can't seem to get to the following:
\begin{align}<br /> [\omega]_\times\,I_{\text{body}} + I_{\text{body}}\,[\omega]_\times &= \sum_p m_p \left( \begin{bmatrix}<br /> 0 & -\omega_3 & \omega_2 \\<br /> \omega_3 & 0 & -\omega_1 \\<br /> -\omega_2 & \omega_1 & 0<br /> \end{bmatrix}\begin{bmatrix}<br /> r_{p,2}^2 + r_{p,3}^2 & -r_{p,1} r_{p,2} & -r_{p,1} r_{p,3} \\<br /> -r_{p,2} r_{p,1} & r_{p,1}^2 + r_{p,3}^2 & -r_{p,2} r_{p,3} \\<br /> -r_{p,3} r_{p,1} & -r_{p,3} r_{p,2} & r_{p,1}^2 + r_{p,2}^2<br /> \end{bmatrix} + \begin{bmatrix}<br /> r_{p,2}^2 + r_{p,3}^2 & -r_{p,1} r_{p,2} & -r_{p,1} r_{p,3} \\<br /> -r_{p,2} r_{p,1} & r_{p,1}^2 + r_{p,3}^2 & -r_{p,2} r_{p,3} \\<br /> -r_{p,3} r_{p,1} & -r_{p,3} r_{p,2} & r_{p,1}^2 + r_{p,2}^2<br /> \end{bmatrix}\begin{bmatrix}<br /> 0 & -\omega_3 & \omega_2 \\<br /> \omega_3 & 0 & -\omega_1 \\<br /> -\omega_2 & \omega_1 & 0<br /> \end{bmatrix} \right) \\<br /> &= \sum_p m_p \left( \begin{bmatrix}<br /> r_{p,1}\,r_{p,2}\,\omega_3 - r_{p,1}\,r_{p,3}\,\omega_2 & \ldots \\<br /> \vdots & \ddots \\<br /> \end{bmatrix} + \begin{bmatrix}<br /> -r_{p,1}\,r_{p,2}\,\omega_3 + r_{p,1}\,r_{p,3}\,\omega_2 & \ldots \\<br /> \vdots & \ddots \\<br /> \end{bmatrix} \right) \\<br /> &= \sum_p m_p \begin{bmatrix}<br /> 0 & \ldots \\<br /> \vdots & \ddots \\<br /> \end{bmatrix} \ne \sum_p m_p \begin{bmatrix}<br /> 2\,r_{p,2}\,\omega_2 + 2\,r_{p,3}\,\omega_3 & \ldots \\<br /> \vdots & \ddots \\<br /> \end{bmatrix}<br /> \end{align}<br />
So, I should have made a mistake in the differentiation. But, where? And, how to proceed?
Or, is it because the definition of tensor cannot be used in performing the derivation? Why?