Consider $x \in [0, 1)$, and partition the interval as $ \bigcup_{1 \leq i \leq 16}^\star (i/16-1/16, i/16] \cup \{0\}$ where the star indicates that the interval for $i = 16$ is totally open.
If $x = 0$, $f(x) = 0 + 0 + 0 + 0 + 0 = 0$.
If $x \in (0, 1/16]$, $f(x) = 0 + 0 + 0 + 0 + 1 = 1$
If $x \in (1/16, 2/16]$, $f(x) = 0 + 0 + 0 + 1 + 2 = 3$
If $x \in (2/16, 3/16]$, $f(x) = 0 + 0 + 0 + 1 + 3 = 4$
If $x \in (3/16, 4/16]$, $f(x) = 0 + 0 + 1 + 2 + 4 = 7$
If $x \in (4/16, 5/16]$, $f(x) = 0 + 0 + 1 + 2 + 5 = 8$
If $x \in (5/16, 6/16]$, $f(x) = 0 + 0 + 1 + 3 + 6 = 10$
If $x \in (6/16, 7/16]$, $f(x) = 0 + 0 + 1 + 3 + 7 = 11$
If $x \in (7/16, 8/16]$, $f(x) = 0 + 1 + 2 + 4 + 8 = 15$
If $x \in (8/16, 9/16]$, $f(x) = 0 + 1 + 2 + 4 + 9 = 16$
If $x \in (9/16, 10/16]$, $f(x) = 0 + 1 + 2 + 5 + 10 = 18$
If $x \in (10/16, 11/16]$, $f(x) = 0 + 1 + 2 + 5 + 11 = 19$
If $x \in (11/16, 12/16]$, $f(x) = 0 + 1 + 3 + 6 + 12 = 22$
If $x \in (12/16, 13/16]$, $f(x) = 0 + 1 + 3 + 6 + 13 = 23$
If $x \in (13/16, 14/16]$, $f(x) = 0 + 1 + 3 + 7 + 14 = 25$
If $x \in (14/16, 15/16]$, $f(x) = 0 + 1 + 3 + 7 + 15 = 26$
If $x \in (15/16, 1)$, $f(x) = 0 + 1 + 3 + 7 + 15 = 26$
Thus, all the possible values $f(x)$ takes on $[0, 1)$ is $S = \{ 0, 1, 3, 4, 7, 8, 10, 11, 15, 16, 18, 19, 22, 23, 25, 26\}$.
PS : This in no way stands as a possible solution to the question asked. It's an addendum to Bacterius's solution above.