Finding Slit Separation Using the Double-Slit Apparatus

  • Thread starter Thread starter patelpalak
  • Start date Start date
  • Tags Tags
    Separation Slit
AI Thread Summary
The discussion revolves around calculating the slit separation in a double-slit apparatus using the equation d sin(theta) = m * lambda. The user initially misapplied the formula by not converting the angle from degrees to radians, which led to an incorrect result. Another participant pointed out that for dark fringes, the correct formula should be dsin(theta) = (m + 0.5)lambda. After addressing these issues, the user successfully found the correct answer with assistance from others. The importance of proper unit conversion and understanding the fringe order in calculations was emphasized.
patelpalak
Messages
8
Reaction score
0

Homework Statement



The green line of gaseous mercury at 546nm fals on a double-slit apparatus.
If the fifth dark fringe is at 0.150 degree from the centerline, what is the slit separaton?


Homework Equations



d sin (theta) = m* lambda

The Attempt at a Solution



ok i used the above equatiob to find the d, slit separation
as d=m*lambda/sin(theta)

but I am getting the wrong answer...and I am not able to figure out the problem...plez
som1 help...!
 
Physics news on Phys.org
Hi patelpalak! :smile:

(have a lambda: λ and a theta: θ :wink:)

Show us your full calculations, and then we can see what went wrong, and we'll know how to help! :smile:
 
ok here's what i did

d sin (theta) =m*lamdba

therefore, d=m*lambda/ sin(theta)

m=5, since its fifth fringe
lambda= 546*10^-9
theta = 0.150 degrees

so, d=(5)(546*10^-9)/sin(0.150)

and i get 0.001042 meters
but it gives me wrong answer...!
thats all i did ...
 
Hi patelpalak! :smile:

(whatever happened to that λ and θ I gave you? :confused:)
patelpalak said:
ok here's what i did

d sin (theta) =m*lamdba

theta = 0.150 degrees

so, d=(5)(546*10^-9)/sin(0.150)

erm :redface: … θ has to be in radians! :wink:
 
Hmmm... If it is a dark fringe, isn't the equation something like:

dsinθ = (m+0.5)λ

?

Also, if my memory serves me correctly, you need to be careful with the order of your minimum. The first minimum has an m value of 0.
 
Last edited:
ok thanks all i got the answer...
appriciate your help...thanx once again!:smile:
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...

Similar threads

Back
Top