MHB Finding the Altitude at a Given Air Pressure

AI Thread Summary
Atmospheric pressure decreases with altitude, and the pressure at sea level is 101.33 kPa when substituting 0 feet into the formula. To find the altitude where air pressure is 70 kPa, one suggested using logarithms, but this method may not be suitable for the current class level. Instead, trial and error was proposed as an alternative, with one participant claiming to have found an altitude corresponding to 10 kPa. The discussion emphasizes the need for a simpler approach to solving the problem without logarithmic calculations.
tardisblue
Messages
3
Reaction score
0
Atmospheric pressure decreases as altitude increases. The pressure can be approximated by the formula $$P(h) = 101.33(0.9639)^\frac{h}{1000}$$ where $$P$$ is pressure in kilopascals and $$h$$ is height in feet.
a) What is the pressure at sea level (0 feet)?
b) At what altitude will the air pressure be 70kPa?So, I kinda have an idea how to do this. For a), you just sub in 0 for h, right? And that gets you 101.33

For b), do you just do trial and error until you get it to equal 70 feet? Could someone show the process/if there's an easier way?

Thanks!
 
Mathematics news on Phys.org
For part b) you can use logarithms to solve for $h$. Let $P(h)=70$:

$$70=101.33(0.9639)^{\frac{h}{1000}}$$

Now, if you have an equation of the form:

$$a=b\cdot c^{\frac{x}{d}}$$

and you wish to solve for $x$, the first thing I would do is divide through by $b$:

$$\frac{a}{b}=c^{\frac{x}{d}}$$

Next, we may take the natural log of both sides:

$$\ln\left(\frac{a}{b}\right)=\ln\left(c^{\frac{x}{d}}\right)$$

On the right, we may use the log property $$\log_a\left(b^c\right)=c\cdot\log_a(b)$$ to write:

$$\ln\left(\frac{a}{b}\right)=\frac{x}{d}\ln(c)$$

Next divide through by $$\frac{\ln(c)}{d}$$:

$$\frac{d\ln\left(\frac{a}{b}\right)}{\ln(c)}=x$$

Can you apply this procedure to the given problem?
 
Thanks for replying!
We don't go over logarithms for this class (that's next year), so I don't think that my teacher would want us to solve it like that, since this is a question on a test review.

So, is there any other method of solving that, without logarithms? I got the answer $$10$$ kPa through trial and error. Is that correct? Thanks again! (:
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top