Fascheue said:
Homework Statement
Find the amplitude of the motion given by x(t) = C cos ωt + D sin ωt.
Homework Equations
[/B]
x(t) = C cos ωt + D sin ωt
The Attempt at a Solution
[/B]
x(t) = C cos ωt + D sin ωt
x’(t) = -Cω sin ωt + Dω cos ωt
0 = -Cω sin ωt + Dω cos ωt
0 = -C sin ωt + D cos ωt
C sin ωt = D cos ωt
tan ωt = D/C
ωt = arctan D/C
t = (arctan D/C)/ω
x((arctan D/C)/ω) = C cos ω((arctan D/C)/ω)+ D sin ω((arctan D/C)/ω)
x((arctan D/C)/ω) = C/sqrt(1 + (D/C)^2) + D^2/Csqrt(1 + (D/C)^2)
There is an easier way that you should know about; it is all the time in physics and engineering.
You can write a linear combination such as ##S = A \sin(\theta) + B \cos(\theta)## as a single sine or cosine, with an amplitude and a phase shift. Basically, use the addition formulas
$$\begin{array}{cl}(1):& \sin(\theta + p) = \sin(\theta) \cos(p) + \cos(\theta) \sin(p)\\
\text{or} &\\
(2):& \cos(\theta - p) = \cos(\theta) \cos(p) + \sin(\theta) \sin(p)
\end{array}$$
to re-write ##S##. For example, if we use formula (1) we have $$A \sin(\theta) + B \cos(\theta) = C\cos(p) \sin(\theta) + C\sin(p) \cos(\theta),$$ so
$$ A = C \cos(p), \; B = C \sin(p) \; \Rightarrow \; C^2 = A^2 + B^2$$
If we choose the positive root ##C = \sqrt{A^2+B^2},## then we have
$$\cos(p) = \frac{A}{\sqrt{A^2+B^2}}, \; \; \sin(p) = \frac{B}{\sqrt{A^2+B^2}} $$
The signs of ##A## and ##B## will tell us which quadrant the point ##(\cos(p), \sin(p))## lies in, so we can tell which value of ##p = \arcsin(B/C)## or ##p = \arctan(B/A)## to pick.